Линн Фостер - Нанотехнологии. Наука, инновации и возможности
- Название:Нанотехнологии. Наука, инновации и возможности
- Автор:
- Жанр:
- Издательство:Техносфера
- Год:2008
- Город:Москва
- ISBN:978-5-94836-16
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Линн Фостер - Нанотехнологии. Наука, инновации и возможности краткое содержание
В предлагаемой книге авторы – известные ученые и бизнесмены, занимающиеся теоретическими и практическими проблемами нанотехнологий, – описывают состояние дел и перспективы их развития на ближайшее десятилетие, а также возможное воздействие нанотехнологий на глобальные процессы.
Книга предназначена для широкого круга читателей: научных работников, специалистов, а также студентов профильных учебных заведений.
Перевод: Арсен Хачоян
Нанотехнологии. Наука, инновации и возможности - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Современные технологии дают возможность механически воздействовать или деформировать некоторые виды молекул (например, белки и ДНК). В принципе, молекула ДНК (рассматриваемая на ноноуровне) представляет собой очень длинную макромолекулу, поведение которой напоминает привычные механические системы из шариков и пружинок. Например, закрепив один конец молекулы ДНК и поместив ее в вязкий поток (то есть, прилагая к молекуле продольные механические напряжения), можно постепенно вывести ее из равновесного состояния в виде «клубка» и растянуть в виде нити. Экспериментально такое растяжение молекулы ДНК осуществила группа П. К. Вонга7: им удалось спроектировать систему из двух микрофлюидных каналов буферных потоков, между которыми протекал раствор, содержащий ДНК. Описанная методика позволяла практически «растянуть» молекулу ДНК, а затем наблюдать процесс ее релаксации и возвращения в равновесное состояние, показанный на рис. 17.3. Метод позволяет проводить прямые измерения механических характеристик за счет варьирования скорости буферных обтекающих потоков, причем воздействие внешних факторов может быть минимизировано.
Рис. 17.3. Релаксация молекулы ДНК после «растяжения» в потоке, фиксируемая с интервалом времени 2,5 секунд по данным работы Вонга и др. [119]
17.2.1. Исследование и описание свойств ДНК/РНК
Любому практическому использованию нанообъектов должно предшествовать тщательное изучение и описание их свойств, а также исследование зависимости свойств от состава, структуры и т. д. Например, биомолекулярное описание белков естественно подразумевает установление их трехмерной структуры, а также измерение механических характеристик этих структур, в дальнейшем полученная информация может быть использована для создания наноустройств, способных выполнять именно описанные биомолекулярные функции. Примером использования такого подхода может служить работа Д. Хо и др. [120] Нанотехнологии создают новые возможности для повышения качества жизни человечества, однако их развитие и применение требует значительного повышения уровня наших знаний об окружающем мире (включая и гораздо более подробную информацию о функциях и возможностях ДНК).
Одним из важнейших событий конца прошлого века стала обширная международная программа под названием «Геном человека». Исследования велись более десяти лет и позволили осуществить общее, как говорят биологи, картирование наследственного кода человека. После этого одной из важнейших задач биологии стала разработка методов, позволяющих быстро и легко устанавливать последовательность нуклеотидов в ДНК отдельных людей, что позволит осуществлять лечение и профилактику с учетом индивидуальных особенностей пациента и приведет к революционным преобразованиям в медицине. В настоящее время этой проблемой занимаются многие ведущие ученые, и нанотехнологии представляют для таких исследований новые и неожиданные возможности. В частности, ценную информацию относительно состава и строения различных белков и ДНК можно получить, исследуя процессы в разнообразных нанопорах. Например, в работе Меллера и др. [121] изучалась электропроводность ионных каналов клеток Staphylococcus aureus. В экспериментах измерялась зависимость от температуры проводимости каналов из α-гемолизмина при трансмембранном переносе ДНК, а полученные данные позволяли оценивать состав и конфигурацию нуклеиновых кислот. На рис. 17.4 приводятся результаты Меллера, относящиеся к процессам переноса полимеров аденозина (poly dA100) и цитозина (poly dC100). Эта методика позволяет определять различные характеристики полимерных носителей, включая длину молекулярной цепочки, структуру и точный состав.
Рис. 17.4. Транслокация полимеров аденозина (poly dA100) и цитозина (poly dC100). Время трансмембранного переноса выступает характеристикой состава и строения. По данным Меллера и др.Метод изучения и описания сложных молекул по характеристикам процессов их переноса через каналы или микропоры оказался очень перспективным и стал новым направлением классификации. Использование мембранных белков для изучения нитей ДНК ограничено, конечно, условиями существования и свойствами самих мембран и белков, образующих ионные каналы. Например, границы измерений в описанных выше экспериментах определяются оптимальными условиями функционирования каналов из α-гемолизмина, когда эти каналы обладают достаточной и регулируемой активностью.
Для создания общей и стандартной экспериментальной основы описания белков и липидов, в работе Чена и др. [122] была предложена единая методика, основанная на использовании нанопор в неорганических материалах (в частности, на основе Si3N4), что, естественно, значительно расширяет диапазон исследований, поскольку активность и работа таких каналов перестают зависеть от температуры и биохимических условий. Метод можно назвать описанием и характеристикой по твердотельным нанопорам, он позволяет достаточно надежно определять особенности ДНК по процессам переноса (транслокации) через наборы пор в твердых материалах. Современные модификации метода твердотельных нанопор позволяют охватывать широкий диапазон изменения внешних условий, включая показатель pH среды, температуру и напряжение. Более того, использование пор из твердых неорганических материалов дает возможность проводить измерения при очень высоких потенциалах, которые в органических системах разрушили бы исследуемые белковые или липидные структуры. Нанотехнологии дают нам возможность изучать и описывать широкие классы молекул в самых различных условиях окружения.
17.3. Другие возможности описания
Атомно-силовая микроскопия, которая первоначально создавалась для изучения топографических особенностей кристаллических поверхностей, в дальнейшем нашла гораздо более широкие области применения. Прежде всего, исследователи оценили возможности АСМ для описания молекулярных структур и манипуляций атомами или наночастицами. Например, уже существуют методы атомно-силовой литографии, при которых АСМ используются для «переноса» наноразмерных паттернов на фоторезист, после чего изделия фабрикуются с применением УФ-излучения или химически активных полимеров. Разрешающая способность такого метода является исключительно высокой, поэтому АСМ-установки могут стать идеальным инструментом нанолитографии, то есть литографии на атомарно-молекулярном уровне.
Далее, АСМ стали широко применяться для прямого исследования поведения биомолекул и связанных с ними структур типа мембран и белков, обеспечивающих движение молекул. Например, используя АСМ, удалось провести измерения так называемого фолдинга (укладки в трехмерную структуру) белковых образований, содержащих иммуноглобулиновые домены [123] . Эта работа заслуживает особого внимания, поскольку понимание процессов образования трехмерных белковых конформаций имеет исключительную важность не только для так называемой белковой инженерии, но и для исследования индивидуальных особенностей организма, связанных с особенностями укладки белков в отдельных организмах.
Читать дальшеИнтервал:
Закладка: