Ричард Докинз - Рассказ предка. Паломничество к истокам жизни
- Название:Рассказ предка. Паломничество к истокам жизни
- Автор:
- Жанр:
- Издательство:Литагент «Corpus»47fd8022-5359-11e3-9f30-0025905a0812
- Год:2015
- Город:Москва
- ISBN:978-5-17-084589-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Докинз - Рассказ предка. Паломничество к истокам жизни краткое содержание
Известный ученый-натуралист и популяризатор науки приглашает в грандиозное путешествие длиной в четыре миллиарда лет – к истокам жизни на Земле. По мере погружения в прошлое к нам, людям, присоединятся другие “пилигримы”, ищущие собственных прародителей. И тогда выяснится, что у нас общая история – и предки – не только с “сестрой цикадой” и “братом фазаном”, но и с растениями, грибами и бактериями, – со всеми организмами на планете.
Рассказ предка. Паломничество к истокам жизни - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Вот что сделал Миллер под руководством Юри. Он взял две колбы, поставил одну над другой и соединил двумя трубками. В нижней находилась нагретая вода, имитирующая первобытный океан. Верхняя представляла собой модель первобытной атмосферы (метан, аммиак, водяной пар и водород). Через одну трубку пар поднимался от “океана” в “атмосферу”. Вторая трубка шла из “атмосферы” в “океан”. По пути она проходила через искровую камеру (“молнии”) и камеру охлаждения, где пар конденсировался, образуя “дождь”, который пополнял “океан”.
Всего неделю спустя океан приобрел желто-коричневый цвет. Как и предсказывал Холдейн, раствор превратился в “бульон” из органических соединений, среди которых было не менее семи аминокислот – главных структурных элементов белков. Три из семи аминокислот (глицин, аспарагиновая кислота и аланин) входили в список из двадцати аминокислот, присутствующих у живых существ. Позднейшие подобные эксперименты, в которых углекислый или угарный газ заменялись метаном, показали сходные результаты. Таким образом, мы можем с уверенностью сказать, что биологически важные небольшие молекулы, включая аминокислоты, сахара и, что особенно важно, структурные элементы ДНК и РНК, могут спонтанно образовываться в лабораторных моделях первобытной Земли Опарина – Холдейна.
До Опарина и Холдейна ученые, размышлявшие о происхождении жизни, предполагали, что первыми организмами были растения – возможно, зеленые бактерии. Ведь люди привыкли думать, что жизнь зависит от фотосинтеза (синтеза органических соединений за счет энергии солнечного света, который сопровождается выделением кислорода). Опарин и Холдейн, выдвинувшие идею восстановительной атмосферы, предположили, что растения появились позднее. Древняя жизнь возникла в море уже существовавших органических соединений. То был питательный бульон, и у жизни не было потребности в фотосинтезе – по крайней мере, пока бульон не кончился.
Для Опарина важнейшим рубежом было возникновение первой клетки. Разумеется, у клеток, как и у организмов, есть важное свойство: они возникают не спонтанно, а лишь от других клеток. Вполне простительно отождествлять возникновение жизни с возникновением первой “клетки” (метаболизатора), а не первого “гена” (репликатора), как это делаю я. Позднее подобный взгляд приобрел физик-теоретик Фримен Дайсон. Большинство современных ученых, в том числе Лесли Оргел из Калифорнии, Манфред Эйген и его коллеги из Германии, Грэм Кернс-Смит из Шотландии (правда, они скорее диссиденты, но это не значит, что их следует сбрасывать со счетов), отдают предпочтение саморепликации – и в хронологическом смысле, и в смысле первостепенности. По-моему, это справедливо.
Какой была бы наследственность, если бы не существовало клеток? Если мы считаем, что для наследственности обязательно нужна ДНК, то этот вопрос сродни задаче о курице и яйце. Ведь ДНК не реплицируется без многочисленных вспомогательных молекул, в том числе белков, а те могут синтезироваться лишь на основе закодированной в ДНК информации. Но тот факт, что ДНК – это основная известная нам самореплицирующаяся молекула, не означает, что в природе не существовало подобных молекул. Кернс-Смит убедительно показал, что первые репликаторы были неорганическими минеральными кристаллами. ДНК вышла на сцену позднее и получила главную роль уже после того, как эволюция жизни сделала возможным генетический захват. Я не буду здесь приводить доводы Кернс-Смита (я отчасти сделал это в книге “Слепой часовщик”). Но есть и более веская причина. Из всего, что я читал, Кернс-Смит лучше всего доказывает первичность репликации и наличие у ДНК некоего предшественника. Об этом предшественнике мы не знаем почти ничего, за исключением того, что он обладал истинной наследственностью. Было бы нехорошо, если бы эти неопровержимые доводы Кернс-Смита стали связаны в сознании людей с куда более спорными и спекулятивными доводами в пользу минеральных кристаллов в качестве предшественников ДНК.
Я ничего не имею против теории минеральных кристаллов, но хочу подчеркнуть первичность репликации и высокую вероятность того, что ДНК переняла свои функции у некоего предшественника. Самый эффективный способ пояснить мою позицию – сразу перейти к другой теории, о том, каким мог быть этот предшественник. РНК безусловно лучше ДНК подходит на роль первого репликатора, и именно ее предлагают на эту роль многие теоретики “мира РНК”. Прежде чем перейти к теории “мира РНК”, поговорим о ферментах. Если репликатор играет главную роль в шоу под названием жизнь, то фермент – это скорее основной партнер, чем актер второго плана.
Жизнь сильно зависит от способности ферментов к виртуозному катализу биохимических реакций. Впервые я услышал о ферментах в школе. Тогда было распространено мнение (на мой взгляд, ошибочное) о том, что науку нужно преподавать на основе жизненных примеров, в связи с чем мы плевали в воду, чтобы продемонстрировать способность фермента амилазы, содержащегося в слюне, расщеплять крахмал и образовывать сахар. В результате складывалось впечатление, что фермент похож на агрессивную кислоту. Примерно так же работают стиральные порошки, содержащие ферменты, которые расщепляют грязь. Однако это разрушительные ферменты, служащие для расщепления крупных молекул. Конструктивные же ферменты участвуют в синтезе крупных молекул из небольших составляющих. Действуют они при этом как “роботы-сводники”.
Клетка содержит раствор тысяч молекул, атомов и ионов. Существует почти бесконечное число способов объединиться друг с другом, однако большинство этих способов не реализуется. Иными словами, в клетке есть широкий диапазон потенциальных химических реакций, большинство которых никогда не происходит. Теперь представьте лабораторию с сотнями бутылок, надежно закупоренных, чтобы их содержимое могло смешаться лишь тогда, когда этого захочет химик. То есть имеется огромный диапазон потенциальных химических реакций.
Теперь представьте, что вы снимаете все бутылки с полок и выливаете содержимое в бочку с водой. Это, конечно, бессмысленный акт вандализма, однако живая клетка в значительной степени есть такая бочка. Сотни содержащихся в клетке компонентов тысяч потенциальных химических реакций не хранятся в бутылках. Они смешаны, но при этом ожидают, находясь преимущественно в инертном состоянии, пока их не смешают для участия в реакции. Они как бы хранятся в бутылках. Ферменты действуют как сводники или лаборанты. Ферменты умеют распознавать вещества – как радиоприемник, который ловит радиостанции, игнорируя сотни других сигналов.
Допустим, есть некая важная химическая реакция, в которой компонент А соединяется с компонентом B, чтобы образовать Z. В лаборатории мы проведем эту реакцию, достав бутылку с этикеткой А с одной полки, бутылку с этикеткой B с другой и смешав их содержимое в чистой колбе с соблюдением необходимых условий. То есть для осуществления нужной реакции нужно взять две бутылки. В клетке множество молекул А и B, плавающих в растворе среди огромного разнообразия других молекул. Молекулы А и B вполне могут встретиться, но даже при встрече они редко объединяются. В любом случае, встреча их не более вероятна, чем тысячи других комбинаций. Так что теперь мы вводим в клетку фермент под названием абзаза ((ABZ-аза), который предназначен для катализа реакции A + B = Z. В клетке миллионы молекул абзазы, и каждая действует как “робот-лаборант”. Каждый лаборант-абзаза захватывает одну молекулу A из смеси свободно плавающих молекул. Затем захватывает одну проплывающую мимо молекулу B. Он удерживает А, придавая молекуле определенное положение. Молекуле B он тоже придает правильное положение, чтобы она могла соединиться с A и создать Z. Кроме того, фермент способен делать и другое (как и лаборант, например, умеет обращаться с мешалкой или бунзеновской горелкой): образовывать временное химическое соединение с A или B , обмениваясь атомами или ионами, которые в итоге возвращаются на места. Таким образом, фермент, как катализатор, не расходуется. В “захватах” фермента образуется молекула Z. После этого “лаборант” выпускает полученную молекулу в раствор и ждет, пока мимо не проплывет следующая молекула А. Фермент захватывает ее, и цикл повторяется.
Читать дальшеИнтервал:
Закладка: