Пол Фальковски - Двигатели жизни. Как бактерии сделали наш мир обитаемым

Тут можно читать онлайн Пол Фальковски - Двигатели жизни. Как бактерии сделали наш мир обитаемым - бесплатно ознакомительный отрывок. Жанр: foreign_edu, издательство Питер, год 2016. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Двигатели жизни. Как бактерии сделали наш мир обитаемым
  • Автор:
  • Жанр:
  • Издательство:
    Питер
  • Год:
    2016
  • Город:
    Санкт-Петербург
  • ISBN:
    978-5-496-02035-0
  • Рейтинг:
    4.88/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Пол Фальковски - Двигатели жизни. Как бактерии сделали наш мир обитаемым краткое содержание

Двигатели жизни. Как бактерии сделали наш мир обитаемым - описание и краткое содержание, автор Пол Фальковски, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Всё в нашем мире зависит от бактерий. Долгое время – почти 4 миллиарда лет – Земля была в их полном распоряжении. Именно эти микроскопические двигатели жизни изменили химический состав нашей планеты и сделали мир пригодным для обитания растений, животных и людей.

Откуда взялись эти поразительные микроорганизмы? Как они устроены и какие тайны скрывают? Почему жизнь без них невозможна? И почему бактерии – социальные организмы?

Известный американский биолог-океанограф Пол Фальковски, член Американского геофизического союза, Американской академии наук и искусств, рассказывает, как и почему бактерии смогли пережить все катаклизмы и приспособиться к меняющейся среде, а также демонстрирует читателю, что всё наше существование стало возможным только благодаря их эволюции, и они – наши истинные предки и настоящие двигатели жизни на Земле.

Двигатели жизни. Как бактерии сделали наш мир обитаемым - читать онлайн бесплатно ознакомительный отрывок

Двигатели жизни. Как бактерии сделали наш мир обитаемым - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Пол Фальковски
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Рис 23 Изображение гетероцисты В некоторых образующих нити видах - фото 23

Рис. 23. Изображение гетероцисты. В некоторых образующих нити видах цианобактерий (см., например, рис. 17, а ), когда клетки начинают восстанавливать (связывать) атмосферный газообразный азот (N2) до аммония (NH4), они образуют особую клетку – гетероцисту, в которой отсутствует реакционный центр, испускающий кислород (фотосистема II). Нитрогеназа – фермент, отвечающий за связывание азота, – обнаруживается исключительно в гетероцистах, где она защищена от повреждения кислородом. Это один из самых ранних примеров дифференциации клеток в биологии. (Публикуется с разрешения Арнольда Тэйтона и Джеймса Голдена.)

В случае с нитрогеназой решением было физически отделить механизм от кислорода. В некоторых случаях клетки, содержащие фермент, были ограничены анаэробной средой; в других случаях развились специализированные клетки, которые были несколько менее проницаемы для кислорода, чем для азота (а это очень непросто, поскольку физический размер молекул этих газов практически одинаков). Еще в каких-то случаях были добавлены специальные процессы, поглощавшие или физически удалявшие кислород из аппарата нитрогеназы. Ни в одном из этих случаев решение нельзя назвать совершенным. В современных океанах в каждый отдельно взятый момент времени из-за кислорода бездействует около 30 % всей нитрогеназы. Это означает постоянное пополнение свалки использованных деталей, которые в конечном счете должны быть возвращены в оборот для производства новых наномеханизмов.

Последний пример еще более ошеломляющ. Он относится к очень старому наномеханизму – рубиско (акроним, образованный из названия рибулозобифосфаткарбоксилаза/оксигеназа). Рубиско представляет собой белковый комплекс, отвечающий за связывание углекислого газа во всех производящих кислород фотосинтезирующих организмах, а также у ряда других микроорганизмов, включая многих хемоавтотрофов. Иногда говорят, и не без основания, что рубиско – самый распространенный белок на планете; тем не менее, хотя он и отвечает за образование большей части клеточного вещества на Земле, это довольно неэффективный фермент.

Рубиско не так уж сложен, однако представляет собой большой белковый комплекс: он подразделяется на две подсистемы, которые должны работать вместе. Когда фермент работает как надо, он забирает углекислый газ, растворенный в воде, и присоединяет его к пятиуглеродному сахару, имеющему две фосфатные «рукоятки» (рибулозобифосфат), образуя две идентичные трехуглеродные молекулы. Этот процесс считается, хотя и небесспорно, самой важной биохимической реакцией на Земле. Это первый шаг, ведущий к фотосинтетическому образованию приблизительно 99 % органических соединений, от которых зависит вся остальная жизнь. Само существование всех животных, включая нас с вами, полностью зависит от рубиско.

Как и D1 с нитрогеназой, рубиско возник задолго до того, как в атмосфере нашей планеты появился кислород, но, кроме того, это произошло в те времена, когда концентрация углекислого газа была во много раз выше, нежели сейчас. В тех условиях рубиско функционировал вполне неплохо. В присутствии кислорода, однако, фермент часто ошибочно принимает его за углекислый газ, хотя это и довольно сложно себе представить, поскольку у этих двух молекул совершенно различная структура. Тем не менее, если рубиско допускает эту ошибку, он включает в свой состав кислород, вырабатывая бесполезный продукт. Такое случается примерно в 30 % случаев у всех растений и представляет собой напрасную трату большого количества энергии.

Подливает масла в огонь еще и то, что этот связывающий углерод наномеханизм работает очень, очень медленно. Каждая молекула рубиско выдает продукт всего лишь около пяти раз за секунду – примерно в 100 раз медленнее, чем большинство других ферментов в типичной фотосинтезирующей клетке. Даже наиболее эффективные, последние из появившихся в процессе эволюции аппараты рубиско очень неторопливы по сравнению со многими другими наномеханизмами клеток.

Можно было бы подумать, что, имея настолько медленный, неэффективный механизм и несколько сотен миллионов лет на его преобразование при помощи мутаций и последующего отбора, природа должна была изобрести более совершенную систему. Примечательно, однако, что этого так и не произошло. Хотя некоторые незначительные усовершенствования и имели место, основное решение оставалось тем же: клетки продолжали вырабатывать этот фермент. Это крупное капиталовложение для фотосинтезирующего организма. Для выработки рубиско требуется много азота, которому могло бы найтись лучшее применение. Так, новые клетки можно было бы строить гораздо быстрее, если бы не несовершенства наномеханизма, отвечающего за связывание углерода.

Принимая во внимание несовершенства этого и многих других ключевых аппаратов клетки, можно задаться вопросом, почему эти механизмы не эволюционировали, чтобы стать более эффективными. Почему гены, кодирующие эти «застывшие метаболические случайности», неспособны выработать более работоспособный аппарат? Ответ, судя по всему, достаточно прост и прямолинеен. В большинстве случаев наномеханизмы состоят из нескольких компонентов, действующих как единое целое, – это в буквальном смысле механизмы, которые физически двигаются. Движение и ориентация всего этого комплекса зависят от его отдельных компонентов. И если незначительные изменения в одной из частей могут никак не влиять на способность всего наномеханизма к движению, то крупные изменения в одном компоненте без одновременных изменений в других могут привести к потере возможности функционировать. В конечном счете решение, найденное природой, было аналогично тому, которое приняла компания Microsoft. Когда в Microsoft была разработана операционная система для компьютеров, программное обеспечение вполне подходило для первых машин, однако, по мере того как машины становились все сложнее, Microsoft добавлял все новые и новые апдейты, модифицирующие старую операционную систему, вместо того чтобы заново разрабатывать ее с нуля. Так же и природа, вместо того чтобы заново строить с нуля клеточные механизмы, пускает в оборот старые, слегка их модифицируя или разрабатывая набор новых компонентов, помогающих им функционировать в изменяющейся среде. По сути, природа так же добавляет новые «апдейты» к уже имеющимся механизмам.

В то время как гены, отвечающие за ключевые наномеханизмы, чрезвычайно консервативны, многие из остальных 99,98 % имеющихся в живых организмах генов обладают высокой изменчивостью. Это означает, что ключевые механизмы обнаруживаются у очень широкого круга организмов, зачастую имеющих очень отдаленных друг от друга эволюционных предков. Например, у микроорганизмов нитрогеназа найдена у множества групп бактерий и нескольких групп архей (но ни в одной из известных групп эукариотов). Точно так же рубиско найден у многих организмов, имеющих очень мало общего. Одна форма рубиско, превалирующая у бактерий, также была найдена у динофлагеллятов, являющихся водорослями-эукариотами, но у других эукариотов ее нет. На самом деле закономерности распределения большинства ключевых наномеханизмов на генеалогическом древе жизни зачастую непредсказуемы.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Пол Фальковски читать все книги автора по порядку

Пол Фальковски - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Двигатели жизни. Как бактерии сделали наш мир обитаемым отзывы


Отзывы читателей о книге Двигатели жизни. Как бактерии сделали наш мир обитаемым, автор: Пол Фальковски. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x