Уолтер Айзексон - Эйнштейн. Его жизнь и его Вселенная

Тут можно читать онлайн Уолтер Айзексон - Эйнштейн. Его жизнь и его Вселенная - бесплатно ознакомительный отрывок. Жанр: foreign-publicism, издательство Array Литагент «Corpus», год 2015. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Эйнштейн. Его жизнь и его Вселенная
  • Автор:
  • Жанр:
  • Издательство:
    Array Литагент «Corpus»
  • Год:
    2015
  • Город:
    Москва
  • ISBN:
    978-5-17-079635-9
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Уолтер Айзексон - Эйнштейн. Его жизнь и его Вселенная краткое содержание

Эйнштейн. Его жизнь и его Вселенная - описание и краткое содержание, автор Уолтер Айзексон, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Уолтер Айзексон, автор знаменитой биографии Стивена Джобса, написал книгу об одном из самых известных ученых XX века, Альберте Эйнштейне. Он не только подробно и доступно изложил суть научных концепций и открытий автора теории относительности, но и увлекательно рассказал об Эйнштейне-человеке. В книге приводится множество документальных материалов – письма, воспоминания, дневниковые записи. Перед нами встает образ удивительно талантливого человека, мечтателя и бунтаря, гуманиста и мыслителя.

Эйнштейн. Его жизнь и его Вселенная - читать онлайн бесплатно ознакомительный отрывок

Эйнштейн. Его жизнь и его Вселенная - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Уолтер Айзексон
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

После разговора с Эйнштейном Гроссман отправился домой, чтобы подумать о проблеме, и, когда просмотрел соответствующую литературу, вернулся к Эйнштейну и порекомендовал ему неевклидову геометрию [48], которая была разработана Бернгардом Риманом 11.

Риман (1826–1866) был вундеркиндом, который в возрасте четырнадцати лет изобрел вечный календарь и подарил его родителям. Он продолжил учебу в крупном германском центре математической науки – Геттингене – под руководством Карла Фридриха Гаусса, первым заинтересовавшегося геометрией искривленных поверхностей. Эту тему Гаусс предложил Риману в качестве диссертационной, и результаты этой работы впоследствии изменили не только геометрию, но и физику.

Геометрия Евклида описывает плоские поверхности, а на искривленных поверхностях она перестает быть справедливой. Например, сумма углов треугольника, нарисованного на плоской странице, равна 180°. Но посмотрите на глобус и представьте себе треугольник, образованный экватором в качестве основания, меридианом, проходящим от экватора к Северному полюсу через Лондон (долгота 0°) в качестве одной боковой стороны, и меридианом, проходящим от экватора к Северному полюсу через Новый Орлеан (долгота 90°), в качестве второй боковой стороны. Если вы посмотрите на этот треугольник, вы увидите, что все три его угла прямые, что, конечно, невозможно в плоском мире Евклида.

Гаусс и другие математики разработали различные типы геометрий, которые описывали поверхность сферы и других криволинейных поверхностей. Риман пошел дальше: он нашел способ описания поверхности независимо от того, как изменяется ее геометрия, – даже если при переходе из одной точки в другую поверхность превращалась из сферической в плоскую и потом в гиперболическую. А потом он пошел еще дальше и не ограничился исследованием кривизны двумерной поверхности, а, опираясь на работу Гаусса, нашел, как математически можно описать кривизну трехмерного и даже четырехмерного пространства.

Это сложная для понимания математическая концепция. Мы еще можем представить себе кривую линию или поверхность, но трудно представить искривленное трехмерное пространство и еще труднее – искривленное четырехмерное пространство. Но для математиков обобщение понятия кривизны на разные измерения является несложным делом – по крайней мере выполнимым. Оно выполняется с помощью введения метрики, которая определяет способ расчета расстояния между двумя точками в пространстве.

На плоской поверхности любой старшеклассник, изучавший алгебру, зная всего две нормальные координаты X и Y, с помощью старины Пифагора может вычислить расстояние между точками.

Но представьте себе плоскую карту (карту мира, например), которая представляет собой проекции полусфер земного шара на плоскость. Местность вблизи полюсов растянута, и измерение расстояний становится более сложным. Если взять две пары точек с одинаковыми расстояниями между ними, но расположенные в разных местах карты, фактические расстояния между двумя соответствующими точками в Гренландии и вблизи экватора нужно вычислять по-разному. Риман разработал способы, позволяющие математически вычислить расстояние между точками в пространстве независимо от того, каким образом оно искривлено и искажено 12.

Для этого он использовал характеристику, называемую тензором. В евклидовой геометрии используются векторы – характеристики, которые имеют как величину, так и направление (например, и скорость, и сила являются векторами), и таким образом, для их описания требуется больше одного простого числа. В неевклидовой геометрии, где пространство искривлено, для его характеристики нам нужен какой-то более сложный геометрический объект, который определяется с помощью упорядоченного набора (матрицы) большего количества чисел (компонентов). Эти объекты называются тензорами.

Метрический тензор является математическим инструментом, который показывает, как рассчитать расстояние между точками в данном пространстве [49]. Для двумерных карт метрический тензор имеет три компоненты. Для трехмерного пространства он имеет шесть независимых компонент. А когда вы переходите к нашему знаменитому четырехмерному пространству, называемому пространством – временем, метрический тензор определяется уже десятью независимыми компонентами.

Риман развил концепцию метрического тензора, обычно обозначаемого символом gμν (произносится как джи-мю-ню). Он имеет шестнадцать компонентов, десять из которых независимы друг от друга и могут быть использованы для определения и описания расстояний в искривленном четырехмерном пространстве – времени 13.

В работе по обобщению теории относительности Эйнштейн с Гроссманом стали использовать и тензор Римана, и другие тензоры, введенные итальянскими математиками Грегорио Риччи-Курбастро и Туллио Леви-Чивитой. Полезное свойство этих тензоров состоит в том, что они общековариантны, и это свойство оказалось важным, поскольку их общековариантность означает, что отношения между их компонентами остаются постоянными, даже когда происходят произвольные изменения или вращения системы координат в пространстве – времени. Другими словами, компоненты этих тензоров могут подвергаться множеству преобразований, связанных с изменениями системы отсчета, но основные закономерности, определяющие соотношения компонент тензора, должны оставаться неизменными 14.

Когда Эйнштейн формулировал свою общую теорию относительности, главной его целью было найти математические уравнения, описывающие два взаимодополняющих процесса.

1. Нужно определить закон движения материи при воздействии на нее гравитационного поля.

2. Нужно определить, как искривится пространство – время под действием гравитационного поля, создаваемого в нем материей.

Его невероятно проницательная догадка состояла в том, что гравитация может быть определена как кривизна пространства – времени, и поэтому ее можно описать метрическим тензором. На протяжении более трех лет он будет судорожно искать правильные уравнения для того, чтобы связать воедино геометрические и физические характеристики 15.

Годы спустя, когда его младший сын Эдуард спросит, чем он так знаменит, Эйнштейн ответит, используя простой образ для описания его грандиозной идеи о том, что гравитация – это искривление самой ткани пространства – времени. “Когда слепой жук ползет по поверхности изогнутой ветки, он не замечает, что в действительности движется по искривленной поверхности, – скажет он. – Мне повезло заметить то, что не заметил жук” 16.

“Цюрихский блокнот”, 1912 год

Начиная с лета 1912 года Эйнштейн бился над выводом уравнения гравитационного поля, используя тензоры Римана и Риччи, а также некоторые другие. По записям в его блокноте, проливающим свет на ход его мыслей, можно проследить за первым этапом этих трудных поисков. Этот “Цюрихский блокнот” на протяжении нескольких лет расшифровывался и разбирался по косточкам командой ученых, в числе которых были Юрген Ренн, Джон Д. Нортон, Тильман Зауэр, Мишель Янссен и Джон Стэчел 17.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Уолтер Айзексон читать все книги автора по порядку

Уолтер Айзексон - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Эйнштейн. Его жизнь и его Вселенная отзывы


Отзывы читателей о книге Эйнштейн. Его жизнь и его Вселенная, автор: Уолтер Айзексон. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x