Билл Фрэнкс - Укрощение больших данных. Как извлекать знания из массивов информации с помощью глубокой аналитики
- Название:Укрощение больших данных. Как извлекать знания из массивов информации с помощью глубокой аналитики
- Автор:
- Жанр:
- Издательство:Манн Иванов Фербер
- Год:2014
- Город:Москва
- ISBN:978-5-00057-146-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Билл Фрэнкс - Укрощение больших данных. Как извлекать знания из массивов информации с помощью глубокой аналитики краткое содержание
Укрощение больших данных. Как извлекать знания из массивов информации с помощью глубокой аналитики - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В потоке больших данных есть информация, которая имеет долгосрочное стратегическое значение; некоторые данные пригодны только для немедленного и тактического использования, а часть данных вообще бесполезна. Самое главное в процессе укрощения больших данных – определить, какие фрагменты относятся к той или иной категории.
Примером могут служить метки радиочастотной идентификации (RFID), речь о которых пойдет в главе 3 Конец ознакомительного фрагмента. Текст предоставлен ООО «ЛитРес». Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес. Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
. Они размещаются на палетах с товарами в процессе их перевозки; если это дорогие товары, метками помечают каждый из них. Со временем станет правилом помечать метками отдельные товары. Сегодня в большинстве случаев это связано с большими затратами, поэтому метки ставятся на каждой палете. Такие метки упрощают процесс отслеживания местоположения палет, позволяют определить, где они загружаются, разгружаются и хранятся.
Представьте себе склад с десятками тысяч палет. На каждом из них находится RFID-метка. Каждые 10 секунд считывающие устройства опрашивают склад: «Кто здесь?» Каждая палета отвечает: «Я здесь». Посмотрим, как в этом случае можно использовать большие данные.
Палета прибывает сегодня и сообщает: «Это палета 123456789. Я здесь». Каждые 10 секунд в течение следующих трех недель, пока находится на складе, палета будет снова и снова сообщать: «Я здесь. Я здесь. Я здесь». По завершении каждого опроса следует проанализировать все ответы на предмет изменения статуса палеты. Таким образом, можно подтвердить то, что изменения были ожидаемыми, и принять меры, если палета неожиданно изменила статус.
После того как палета покинула склад, она больше не отвечает на запрос считывающего устройства. После подтверждения того, что отбытие палеты было ожидаемым, все промежуточные записи с ответом «я здесь» не имеют значения. По-настоящему важны только дата и время появления палеты на складе, а также дата и время ее отбытия. Если между этими датами прошло три недели, то имеет смысл сохранить только две временн ы е метки, связанные с прибытием и отбытием палеты. Ответы, полученные с интервалом в 10 секунд, говорящие: «Я здесь. Я здесь. Я здесь», не имеют какой-либо долгосрочной ценности, однако собрать их было необходимо. Необходимо было проанализировать каждый ответ в момент его создания, однако долгосрочной ценности они не имеют, поэтому их спокойно можно удалить после отбытия палеты.
Одна из главных задач при укрощении больших данных – определить фрагменты, которые имеют ценность. Большие данные содержат информацию, пригодную для долгосрочного стратегического применения; данные, которые могут использоваться в краткосрочной перспективе, а также данные, которые вообще ничего не значат. Удаление множества данных может показаться странным, однако при работе с большими данными это в порядке вещей. Вам потребуется время, чтобы к этому привыкнуть.
Если необработанные большие данные можно сохранить в течение некоторого периода, это позволит вернуться к ним и извлечь дополнительные данные, пропущенные при первоначальной обработке. Хороший пример такого подхода – процесс отслеживания веб-активности. Большинство сайтов используют метод, основанный на тегах: необходимо заранее определить текст, изображения или ссылки, взаимодействие пользователей с которыми требуется отслеживать. Теги, которые не видны пользователю, сообщают о его действиях. Поскольку данные поступают только об элементах, содержащих тег, б о льшая часть информации не учитывается. Проблема может возникнуть, если по каким-то причинам не выполняется запрос на тегирование нового рекламного изображения, в результате чего упускается возможность проанализировать взаимодействие с ним. Это изображение должно быть помечено тегом, прежде чем пользователь его увидит. Можно добавить тег и позже, однако в этом случае собираться будут только данные, полученные после добавления тега.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
Сноски
1
Скоринг (англ. score – подсчет очков) – система оценки кредитоспособности, в основу которой положены численные статистические методы обработки анкет потенциальных заемщиков. Суть ее в том, что за каждую позицию анкеты («стаж работы» или «количество детей») потенциальный заемщик получает некое количество баллов. В зависимости от суммы набранных баллов принимается решение об одобрении или отказе в выдаче кредита. Прим. ред .
2
Gartner – исследовательская и консалтинговая компания, специализирующаяся на рынках информационных технологий. Прим. ред .
3
McKinsey Global Institute – американская глобальная консалтинговая фирма. Прим. ред
4
Итеративная загрузка данных (от англ. iteration – повторение) – выполнение загрузки данных параллельно с непрерывным анализом полученных результатов и корректировкой предыдущих этапов работы. Прим. ред .
Комментарии
1
Адриан М. Большие данные (Big Data) [Электронный ресурс] // Teradata, 1:11. URL: www.teradatamagazine.com/v11n01/Features/Big-Data/. Здесь и далее прим. авт.
2
Большие данные: следующий рубеж инноваций, конкуренции и эффективности (Big Data: The Next Frontier for Innovation, Competition, and Productivity) // McKinsey Global Institute, май 2011 года.
3
Большие данные: следующий рубеж инноваций, конкуренции и эффективности (Big Data: The Next Frontier for Innovation, Competition, and Productivity) // McKinsey Global Institute, май 2011 года.
4
«Большие данные» – большие возможности (CEO Advisory: “Big Data” Equals Big Opportunity) // Gartner, 31 марта 2011 года.
Интервал:
Закладка: