Билл Фрэнкс - Укрощение больших данных. Как извлекать знания из массивов информации с помощью глубокой аналитики
- Название:Укрощение больших данных. Как извлекать знания из массивов информации с помощью глубокой аналитики
- Автор:
- Жанр:
- Издательство:Манн Иванов Фербер
- Год:2014
- Город:Москва
- ISBN:978-5-00057-146-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Билл Фрэнкс - Укрощение больших данных. Как извлекать знания из массивов информации с помощью глубокой аналитики краткое содержание
Укрощение больших данных. Как извлекать знания из массивов информации с помощью глубокой аналитики - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Иногда больший объем данных может превратиться в нечто новое. Например, вы, вероятно, в течение многих лет каждый месяц вручную снимали показания счетчика электроэнергии. Можно ли считать, что интеллектуальный счетчик, фиксирующий показания каждые 15 минут, предоставляет те же самые данные? Или эта информация совершенно иного качества, открывающая возможности для проведения более глубокого анализа? Об этом речь пойдет в третьей главе Конец ознакомительного фрагмента. Текст предоставлен ООО «ЛитРес». Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес. Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
.
В-третьих, многие источники больших данных не замышлялись как дружественные к пользователю. Впрочем, некоторые из них вообще не замышлялись! Возьмем, к примеру, текстовые потоки от сайта социальных медиа. Пользователей невозможно убедить соблюдать определенные правила грамматики, синтаксиса или лексические нормы. Когда люди публикуют запись, вы получаете то, что получаете. Работать с такими данными в лучшем случае трудно, а в худшем – отвратительно. О текстовых данных говорится в главах 3 Конец ознакомительного фрагмента. Текст предоставлен ООО «ЛитРес». Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес. Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
и 6 Конец ознакомительного фрагмента. Текст предоставлен ООО «ЛитРес». Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес. Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
. Большинство традиционных источников данных дружественны к пользователю. Например, системы для отслеживания транзакций предоставляют данные в понятной форме, что облегчает их загрузку и работу с ними. Частично это было продиктовано исторически сложившейся необходимостью в эффективном использовании пространства. Для избыточных данных просто не было места.
Традиционные источники данных с самого начала разрабатывались с учетом определенных требований. Каждый бит данных имел высокую ценность, иначе он не был бы учтен. Поскольку стоимость хранения данных стремится к нулю, источники больших данных, как правило, содержат все, что может быть использовано. Это означает, что при проведении анализа необходимо разбираться в огромном количестве хлама.
И, наконец, потоки больших данных далеко не всегда представляют собой особую ценность. Б о льшая часть данных может быть вообще бесполезной. В журнале логов содержится как очень полезная информация, так и не имеющая ценности. Необходимо отсортировать мусор и извлечь ценные и релевантные фрагменты информации. Традиционные источники данных с самого начала разрабатывались так, чтобы содержать на 100 % релевантные данные. Это было связано с ограничениями масштабируемости: включение в поток данных чего-то неважного слишком дорого обходилось. Мало того что записи данных были предопределены заранее – каждый фрагмент данных имел высокую ценность. С тех пор изменилось одно важное обстоятельство: мы более не ограничены объемом носителя. Это привело к тому, что большие данные по умолчанию включают всю возможную информацию, а позже приходится разбираться в том, что же из собранного имеет значение. Зато есть гарантия, что ничего не будет упущено, но усложняет процесс анализа больших данных.
В чем сходство между большими данными и традиционными данными?
Любая животрепещущая тема вызывает различные, порой взаимоисключающие толкования. Существует мнение, что большие данные в корне изменят способы анализа и использования его результатов. Однако если вдуматься, это не так. Это как раз тот случай, когда шумиха выходит за рамки реальности.
Ни для кого не новость, что большой объем больших данных создает проблемы масштабируемости. Большинство новых источников данных поначалу считались большими и сложными. Большие данные – это просто очередная волна новых данных, которая раздвигает существующие пределы. Аналитики смогли приручить прошлые источники данных с учетом существовавших в то время ограничений, и большие данные тоже будут приручены. В конце концов, аналитики в течение длительного времени находились в авангарде изучения новых источников данных. Так и будет продолжаться.
Кто первым начал анализировать данные о телефонных звонках в телекоммуникационных компаниях? Аналитики. На своей первой работе я проводил анализ данных, записанных на магнитные ленты. В то время казалось, что данных было огромное количество. Кто первым начал анализировать данные с мест продаж в розничных магазинах? Аналитики. Сначала анализ данных о сотнях тысяч товаров в тысячах магазинов считался огромной проблемой. Сегодня это не так.
Профессионалы в области аналитики, которые первыми начали работать с этими источниками, имели дело с тем, что в то время считалось немыслимо большими объемами данных. Им необходимо было найти способ анализа и использования данных с учетом существующих в то время ограничений. Многие сомневались в том, что это возможно, а некоторые даже ставили под сомнение ценность таких данных. Это очень похоже на то, что происходит с большими данными сегодня, не так ли?
Большие данные не повлияют ни на задачи, которые решают профессионалы в области аналитики, ни на причины, по которым они это делают. Даже для тех, кто сейчас называет себя не аналитиками, а учеными в области науки о данных, цели и задачи остаются прежними. Конечно, решаемые проблемы будут эволюционировать вместе с большими данными – так было всегда. Однако в конце концов аналитики и ученые будут просто изучать новые и немыслимо большие наборы данных, чтобы обнаружить ценные тенденции и модели, как они всегда это делали. В этой книге под термином «профессиональный аналитик» мы подразумеваем как традиционных аналитиков, так и ученых. Более подробно мы поговорим об этих специалистах в главах 7 Конец ознакомительного фрагмента. Текст предоставлен ООО «ЛитРес». Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес. Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
, 8 Конец ознакомительного фрагмента. Текст предоставлен ООО «ЛитРес». Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес. Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
и 9 Конец ознакомительного фрагмента. Текст предоставлен ООО «ЛитРес». Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес. Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
. Сейчас важно понять, что задачи, связанные с большими данными, не так новы, как может показаться.
Интервал:
Закладка: