Ричард Форман - Теории всего на свете

Тут можно читать онлайн Ричард Форман - Теории всего на свете - бесплатно ознакомительный отрывок. Жанр: foreign_edu, издательство Литагент БИНОМ. Лаборатория знаний, год 2016. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
Ричард Форман - Теории всего на свете
  • Название:
    Теории всего на свете
  • Автор:
  • Жанр:
  • Издательство:
    Литагент БИНОМ. Лаборатория знаний
  • Год:
    2016
  • Город:
    Москва
  • ISBN:
    978-5-93208-210-2
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Форман - Теории всего на свете краткое содержание

Теории всего на свете - описание и краткое содержание, автор Ричард Форман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
«Напишите о вашем самом любимом, самом интересном, глубоком и изящном объяснении», – попросил издатель и писатель Джон Брокман известнейших ученых всего мира, работающих в разных областях науки, а потом собрал полученные эссе в книге, которую вы сейчас держите в руках. На ее страницах – рассказы о теориях, помогающих понять главные идеи физики и астрономии, экономики и психологии, биологии и многих других наук. Чтение это увлекательное, ведь среди авторов сборника – Джаред Даймонд, Нассим Талеб, Стивен Пинкер, Мэтт Ридли, Ричард Докинз и другие выдающиеся умы современности.

Теории всего на свете - читать онлайн бесплатно ознакомительный отрывок

Теории всего на свете - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Ричард Форман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Физик, директор по науке Института квантовой оптики и информации Австрийской академии наук; автор книги Dance of the Photons: From Einstein to Quantum TeleportationТанцующие фотоны: от Эйнштейна к квантовой телепортации »)

Мое любимое глубокое, элегантное и красивое объяснение – предположение Альберта Эйнштейна, сделанное в 1905 году, о том, что свет состоит из квантов энергии, сегодня называемых фотонами. Мало что известно, и даже физикам, о том, как Эйнштейн пришел к такому выводу. Часто полагают, что он придумал эту концепцию, чтобы объяснить фотоэлектрический эффект. Безусловно, этому посвящена часть публикации Эйнштейна 1905 года, но только финальная часть. Сама по себе идея гораздо глубже, элегантнее – и да, красивее.

Представьте себе закрытый контейнер, стены которого нагреты до высокой температуры. Раскаленные стены испускают и поглощают излучение. По прошествии некоторого времени внутри контейнера установится равновесное распределение излучения. Это было хорошо известно до Эйнштейна. Макс Планк предложил идею квантования, которая объясняла распределение энергии излучения в подобном объеме. Эйнштейн пошел дальше. Он изучил, насколько упорядочено распределение энергии излучения в таком контейнере.

Для физиков энтропия – это мера беспорядка. Австрийский физик Людвиг Больцман показал, что энтропия системы служит мерой вероятности ее состояния. Простым примером могут послужить книги, заметки, фотографии, ручки, карандаши и т. д., которые, скорее всего, разбросаны по поверхности моего рабочего стола, а не образуют аккуратные стопки. Если мы рассмотрим миллионы атомов внутри контейнера, то гораздо вероятнее, что они равномерно распределены по всему контейнеру, а не находятся в одном углу. Первое состояние менее упорядочено, и если атомы займут больший объем, их энтропии еще увеличится.

Эйнштейн понимал, что энтропия излучения (в том числе света) меняется вместе с объемом, который оно занимает, подчиняясь тому же математическому принципу, что и атомы. В обоих случаях энтропия увеличивается как логарифм объема. Для Эйнштейна это не могло быть простым совпадением. Если можно объяснить энтропию газа тем, что он состоит из атомов, значит, излучение тоже состоит из частиц, которые Эйнштейн назвал квантами энергии, или фотонами.

Эйнштейн немедленно, и с успехом, применил эту идею к фотоэффекту. Но он прекрасно понимал фундаментальное противоречие идеи квантов энергии с наблюдаемым и хорошо изученным явлением интерференции.

Как объяснить интерференционную картину от двух щелевых источников света? Это явление, согласно Ричарду Фейнману, представляло собой «единственную загадку» квантовой физики. А разгадка очень проста. Направив пучок фотонов на пластину с двумя открытыми щелями, мы получаем на экране за пластиной светлые и темные полосы. Когда открыта одна щель, интерференционная картина не наблюдается, а вместо нее мы видим широкое распределение фотонов. Результат легко объяснить в соответствии с волновой теорией света. Волны проходят через обе щели, подавляя или усиливая друг друга. Вот почему мы видим светлые и темные полосы на экране.

Но что получится, если интенсивность светового пучка очень слаба и только один фотон в каждый момент времени проходит через пластину? Естественно предположить, что фотон пройдет через одну из щелей, но не через обе сразу. Мы можем провести эксперимент, посылая по одному фотону через пластину. Согласно Эйнштейну, интерференционной картины не будет, потому что фотон как частица должен будет «выбрать» одну открытую щель или другую, и, таким образом, не будет ни подавления, ни усиления, как в случае со световыми волнами. Эйнштейн предполагал, что полосы возникают только в том случае, когда множество фотонов единовременно проникают через щели плас тины и, взаимодействуя друг с другом, образуют интерференционную картину.

Сегодня мы знаем, что интерференционная картина возникает даже тогда, когда всего один фотон в секунду проходит через пластину. Если мы подождем достаточно долго и посмотрим на экран, то увидим темные и светлые полосы. Современное объяснение состоит в том, что интерференционная картина возникает только в том случае, если не существует информации – нигде во Вселенной, – через какую щель проникает частица (утверждение, что частица проникает через обе щели, следует воспринимать скептически). Пусть Эйнштейн и ошибался в данном случае, но его идея энергетических квантов света, то есть фотонов, имела большое будущее.

В том же поразительном 1905 году, в котором Эйнштейн также опубликовал специальную теорию относительности, в письме своему другу Конраду Хабихту он назвал публикацию о фотонах «революционной». Насколько известно, это единственная его работа, которую он когда-либо так называл, и неудивительно, что в 1921 году она принесла ему Нобелевскую премию. О том, что всего лишь несколькими годами ранее его теории казались совсем неочевидными, свидетельствует знаменитое письмо, подписанное Планком, Вальтером Нернстом, Генрихом Рубенсом и Эмилем Варбургом, которые предложили принять Эйнштейна в члены Прусской академии наук в 1913 году. Они писали: «В своих размышлениях временами он попадает мимо мишени, как, например, в гипотезе о квантах света, но это не следует ставить ему в вину, так как без периодического риска, даже в наиболее точных науках, не может быть сделано ни одно настоящее открытие». Глубокое, элегантное и красивое объяснение энтропии излучения с помощью квантов света, предложенное Эйнштейном в 1905 году, – вес кое основание целесообразности свободного полета мысли.

О малом

Джереми Бернштейн

Заслуженный профессор физики Технологического института Стивенса, бывший сотрудник журнала New Yorker ; автор книги Quantum LeapsКвантовые скачки »)

Отвечая на вопрос Edge , трудно не поддаться искушению и не привести в пример что-нибудь «большое», наподобие теории относительности Эйнштейна. Вместо этого я обращусь к «малому». Когда Планк в начале XX столетия предложил свой квант действия, он понимал, что это открывает новый ряд естественных констант. Так, согласно Планку, время Планка представляет собой квадратный корень из отношения произведения постоянной Планка и гравитационной постоянной к скорости света в пятой степени. Это мельчайшая единица времени, но что она описывает, о чем говорит? Проблема состоит в том, что все физические константы одинаковы как для покоящегося, так и для движущегося наблюдателя. Но ведь время не таково. Я изложил эту проблему своим коллегам, и Фримен Дайсон нашел блестящее решение. Он попытался придумать часы, которые измерили бы эту единицу времени, и с помощью квантовой неопределенности показал, что такое измерение невозможно. Время Планка – не время, или, можно сказать, – оно вне времени.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Форман читать все книги автора по порядку

Ричард Форман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Теории всего на свете отзывы


Отзывы читателей о книге Теории всего на свете, автор: Ричард Форман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x