Ричард Суинберн - Существование Бога
- Название:Существование Бога
- Автор:
- Жанр:
- Издательство:Array Литагент «Знак»
- Год:2014
- Город:Москва
- ISBN:978-5-9551-0717-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Суинберн - Существование Бога краткое содержание
Существование Бога - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Степень простоты и диапазон теории определяют присущую ей вероятность, а вероятность эта зависит от ее отношения к любым данным. Чем проще теория, тем более она вероятна. Простота теории, на мой взгляд, связана с тем, что она постулирует немногие (логически независимые) сущности, немногие свойства этих сущностей, немногие виды сущностей, немногие виды свойств (свойств, которые проще наблюдать), немногие независимые друг от друга законы с немногими понятиями, связывающими немногие переменные в наиболее математически простые формулировки. Например, теория фундаментальных частиц будет простой в той мере, в которой она постулирует лишь немногие виды частиц с такими свойствами (например, масса и электрический заряд), которые мы можем наблюдать на примере других, более крупных, частиц, действие которых определяется простой математической формулой. Теория является более простой, а потому обладает большей предварительной вероятностью, в той степени, в которой она удовлетворяет этим критериям. Но часто случается так, что для того, чтобы быть возможно истинной, теория должна удовлетворять другому критерию (например, это может быть объяснительная сила), но сделать это может лишь не самая простая теория. Наилучшей теорией может оказаться не самая простая, но в отношении других вещей, при прочих равных условиях, сохраняется принцип: чем проще, тем более вероятно.
Я считаю свойство Р более легко наблюдаемым, чем свойство Q, если мы можем в любом случае обнаружить некий объект, который является Р , не обнаруживая при этом, что он обязательно является Q, но не наоборот – в мое понимание «наблюдаемости» входит и «наличие в опыте» (experienceability). Широко известный философский пример «зелубого» («grue») 2может проиллюстрировать этот критерий. Мы можем определить некий объект как «зелубой» в момент времени t, если и только если для t до 2050 г. он будет зеленым, а для t 2050 г. или позже – будет голубым. Тогда все объекты, наблюдаемые до 2050 г., которые являются зелеными:, будут также зелубыми, и наоборот. Но если мы обнаружим, что большое количество изумрудов является зелеными, а следовательно, и зелубыми, это не сделает более вероятным существование закона, согласно которому все изумруды зелубые, и упомянутый выше критерий объясняет, почему это так. Некий объект может быть распознан как зеленый (или не зеленый) без знания времени (то есть независимо от даты), но для того чтобы понять, является: ли: объект зелубым, нам нужно определить его цвет (в обычном смысле), а также знать дату. В этом смысле «зелубой» менее зависим от непосредственного наблюдения, чем «зеленый» 3. Конечно, как нас учит физика, возможно, что фундаментальные законы природы относятся к таким свойствам [объектов], которые совсем не просто непосредственно наблюдать (например, гиперзаряд или изоспин), но именно поэтому законы второго типа обладают большей: объяснительной силой, чем законы, постулированные на основе наблюдаемых свойств. При прочих равных условиях (которые не так часто встречаются), законы, постулированные на основе наблюдаемых свойств, кажутся: более вероятными.
Одна формулировка закона будет математически более простой, чем другая, в той мере, в которой последняя использует термины, определяемые через термины: первой, но не наоборот. Математические действия можно упорядочить с точки зрения простоты: сложение проще, чем умножение, умножение проще, чем возведение в степень; скаляры проще, чем векторы, векторы – чем тензоры, и так далее. Из этого условия также следует, что более простые теории скорее будут использовать малые числа, чем большие, и скорее целые числа, чем дроби. Так, в случае равновероятных феноменов (в той степени, в которой они поддаются измерению), мы должны скорее предпочесть гипотезу взаимного притяжения объектов, обратно пропорционального г 2 (квадрату расстояния между ними), чем обратно пропорционального r 20…(100 нулей)…01. Однако любопытно отметить, что гипотезы, приписывающие объектам свойства в бесконечной степени, проще, чем те, которые приписывают свойства в конечных, но больших степенях. Например, мы можем осознать понятие бесконечной скорости (то есть скорости, большей, чем любое количество конечных единиц скорости), и при этом нам не нужно знать, что гуголплекс представляет собой 10 10000000000. Научная практика постоянно показывает это предпочтение бесконечных величин большим конечным величинам, характеризующим свойства. Предпочитали считать, что свет имеет, скорее, бесконечную скорость, чем конкретную большую конечную скорость (например, 301 000 км/сек), до тех пор, пока не обнаружили, что первая гипотеза совершенно невероятна. Однако отметим, что предпочтение бесконечных [величин] большим конечным [величинам] относится только к степеням свойств, а не к числу независимых сущностей. Я предполагаю, что это различие возникло из-за того, что степени свойств сливаются (объединяются) с тем, чтобы не действовать независимо: вы не сможете разделить скорость 4 фт/сек на две разные скорости по 2 фт/сек. Скорость – это нечто целое, но иного рода, чем, например, число раздельно наблюдаемых планет. Так, например, нам не нужно постулировать бесконечное число планет для того, чтобы объяснить движение наблюдаемых светил, если мы можем с тем же успехом объяснить это движение через большое конечное число планет.
Оценивая простоту научной теории на основе математической простоты ее уравнений, научная практика показывает, что нам нужно использовать наиболее простые формулировки этой теории. Теория сообщает нам о сущностях, о свойствах, которыми они обладают, и о том, как они взаимодействуют, и всё это может быть выражено множеством различных способов, то есть посредством множества разных, но логически эквивалентных уравнений. Уравнение «х =у» эквивалентно уравнению «х = у + dy 3 I dy — 3 у 2», и в более общем виде – его конъюнкции с более сложными математическими теоремами. Но именно через ее самую простую формулировку (например, первую в приведенном примере) мы судим о простоте теории. Она проявляет свои преимущества в применении.
К тому же внутренняя вероятность теории уменьшается по мере увеличения ее диапазона. Я имею в виду, что в той мере, в которой она применима ко всё большему и большему числу объектов и претендует на то, чтобы всё больше и больше сообщить нам о них, – настолько же она становится менее вероятной. Очевидно, что чем больше вы декларируете, тем больше ошибок вы можете совершить. Сила этого критерия состоит в том, чтобы приписать меньшую вероятность скорее тем теориям, которые описывают все материальные тела, чем тем, например, которые описывают только все тела, находящиеся на земле, или скорее тем теориям, которые описывают все металлы, чем тем, которые описывают только медь. Однако, как правило, если теория утрачивает диапазон, то она также утрачивает и простоту, поскольку любое ограничение диапазона чаще всего произвольно и всё усложняет. Почему выбрано ограничение телами, находящимися на земле? Утверждение относительно поведения всех материальных объектов выглядит проще. Вот поэтому я и не думаю, что критерий узкого диапазона имеет большое значение для определения предварительной вероятности, и потому в дальнейшем я сосредоточу внимание главным образом на двух других критериях предварительной вероятности, обращаясь к данному критерию лишь в ключевых моментах. Теория обладает объяснительной силой в той мере, в какой она влечет за собой или делает вероятным возникновение многих различных феноменов, доступных наблюдению, возникновение которых невозможно каким-то иным способом.
Читать дальшеИнтервал:
Закладка: