Игорь Кароль - Парадоксы климата. Ледниковый период или обжигающий зной?
- Название:Парадоксы климата. Ледниковый период или обжигающий зной?
- Автор:
- Жанр:
- Издательство:Array Литагент «АСТ»
- Год:2013
- Город:Москва
- ISBN:978-5-462-01402-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Игорь Кароль - Парадоксы климата. Ледниковый период или обжигающий зной? краткое содержание
Парадоксы климата. Ледниковый период или обжигающий зной? - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Существует около четырех десятков сценариев, из которых наиболее употребимы сценарии А1, А2, В1 и В2, обобщающие четыре возможных варианта эволюции антропогенных выбросов.
Сценарий А1 исходит из примерно линейной экстраполяции существующей современной тенденции. Причем рассматриваются три его разновидности: A1F (преимущественного использования ископаемого углеродного топлива и большого выброса CO 2в атмосферу), A1T (эксплуатации возобновляемых источников энергии с минимальным выбросом CO 2) и A1B (промежуточный вариант между A1F и A1T). Сценарий А2 соответствует «пестрому миру с большим разнообразием региональных экономик и относительно слабым развитием новых технологий». Минимальные выбросы парниковых газов и сульфатных аэрозолей предполагаются в сценарии В1 «с конвергенцией (схождением) разных социальных систем к экономике информации и сервиса и внедрением чистых «зеленых» и энергоэффективных технологий». Сценарий В2 «описывает мир с промежуточным народонаселением и экономическим ростом, подчеркивая при этом локальные решения проблемы экономической, социальной и экологической устойчивости». В каждом из сценариев были определены ожидаемые эмиссии основных парниковых газов – CO 2, СН 4, N 2O и SO 2как предшественника сульфатных аэрозолей, а по ним и концентрации этих газов. То, что при этом получилось, показано на рис. 25. Для сравнения на рисунке приведен и наиболее популярный из ранее использовавшихся сценарий IS92а .
Эмиссии, а с ними и концентрации имеют большой разброс, причем для большинства газов максимальный и минимальный уровни значений достигаются в сценариях A1F и A1T с использованием ископаемого углеродного и возобновляемых источников энергии соответственно. Для сценариев В1 и В2 характерны замедление роста и даже падение эмиссий, особенно заметное для отсутствующего на рис. 25 SO 2. Концентрации углекислого газа и оксида азота(I), «время жизни» которых в атмосфере составляет 100 лет и более, растут с разной скоростью во всех сценариях вплоть до 2100 г., но при этом примерно до 2040 г. их различия от сценария к сценарию мало заметны. Куда более чувствителен к сценариям метан, время пребывания которого в атмосфере много короче – 10–12 лет.

Рис. 25. Тренды концентраций основных парниковых газов, рассчитанные в соответствии с указанными сценариями
Содержание в атмосфере другой большой группы парниковых газов – озоноразрушающих химикатов – подчинено ограничениям, накладываемым Монреальским протоколом. Что же касается самого озона, то изменения его концентрации в сценарии, как правило, не включаются и подлежат расчету в каждом модельном прогнозе. Виной тому – отсутствие потока озона в атмосферу от наземных источников (напомним, что его образование и разрушение происходит в самой атмосфере) и короткое «время жизни».
На рисунке 21, а цв. вклейки отображена в некотором смысле итоговая характеристика каждого из шести основных сценариев – глобальный выброс всех парниковых газов в эквиваленте CO 2. Для того чтобы унифицировать выбросы различных парниковых газов, обычно используется специфическая единица измерения – эквивалентный выброс CO 2 . Согласно Обобщающему докладу МГЭИК (2007) [18], «эквивалентный выброс CO 2– это объем выброса CO 2, который вызвал бы такое же комплексное радиационное воздействие за данный период времени, как и объем выброса какого-либо долгоживущего парникового газа или смеси парниковых газов. Эквивалентный выброс CO 2получают путем умножения объема выброса какого-либо парникового газа на его потенциал глобального потепления за данный период времени». Уже упоминавшийся потенциал глобального потепления показывает, во сколько раз молекула какого-либо парникового газа (метана, оксида азота(I) или др.) эффективнее поглощает радиацию по сравнению с молекулой CO 2. Пунктиром выделена область, в пределах которой этот выброс имеет место при рассмотрении почти всех четырех десятков сценариев. Рисунок демонстрирует происходящие с течением времени изменения, при этом наиболее экологически «грязными» оказываются сценарии A1F и A2: в них к 2100 г. выбросы примерно в 3–4 раза превышают эмиссию в сценариях A1T и B1. Однако если сравнивать все сценарии (среди которых есть и весьма экзотические), то в них можно обнаружить и значительно большее превышение. Рис. 21, б цв. вклейки иллюстрирует рассчитанный с использованием группы климатических моделей отклик температуры приземного воздуха на указанное в левой части рисунка изменение эмиссии парниковых газов в течение XXI века. Справа в столбцах показаны наиболее вероятные приросты приземной температуры к 2100 г. для каждого из шести сценариев ( выделены в столбце более насыщенным цветом ) и разброс таких приростов, полученный разными группами моделистов ( остальные части столбцов ). К примеру, при выбросах по сценарию A1F большинство моделистов сошлись на том, что наиболее вероятно увеличение температуры на 4–4,2 °C, но какая-то из моделей показала рост лишь на 2,4 °C, а другая модель оценила этот рост в 6,4 °C. Розовая линия на рисунке не соответствует никакому сценарию, она представляет модельную оценку изменения приземной температуры при предположении, что атмосферные концентрации сохраняются постоянными на уровне величин 2000 г. (интересно, каким образом этого достичь на практике?). Даже при таких «щадящих» условиях имеет место небольшое (~0,2 °C в течение XXI века) увеличение приземной температуры. Это продолжение потепления «обеспечили» парниковые газы, уже накопленные в атмосфере в ХХ веке и постепенно из нее удаляемые.
Другой величиной, характеризующей прогнозируемые изменения климата, как вы помните, является радиационный форсинг. Его вычислением исправно сопровождаются многие модельные исследования. Когда речь идет о форсинге от прогнозируемых изменений климата, в качестве отправной точки отсчета обычно выбирают начало так называемой «индустриальной эпохи» (середину XVIII или XIX века). Следуя этой традиции, были произведены оценки величин радиационного форсинга для вышеупомянутых сценариев. Разумеется, наличие прямой связи между значениями радиационного форсинга и сценарных концентраций парниковых газов едва ли может кого-то удивить, что и подтверждает рис. 22 цв. вклейки. Но если рост температуры хорошо понятен каждому из нас и потому не нуждается в каких-либо разъяснениях, то об увеличении радиационного форсинга так не скажешь.
С незапамятных времен бытует мнение, что все познается в сравнении. Не станем пренебрегать этой истиной. Согласно рис. 22 цв. вклейки, для максимального сценария (т. е. сценария с самым быстрым ростом эмиссий парниковых газов) среди вышеупомянутых сценариев – A1F радиационный форсинг к 2100 г. достигнет 9 Вт/м 2. Много это или мало? Обратимся еще раз к таблице 4 (с. 148). Нетрудно видеть, что антропогенному выбросу всех парниковых газов в 2005 г. соответствовал радиационный форсинг, приблизительно равный 3 Вт/м 2. Таким образом, при осуществлении сценария A1F радиационный форсинг превзойдет имеющийся на данный момент примерно в три раза. Аналогично, в самом «слабом» сценарии (т. е. в сценарии с самым медленным ростом эмиссий парниковых газов (опять же среди вышеупомянутых) – сценарии В1) радиационный форсинг увеличится по отношению к современному примерно на 34 %.
Читать дальшеИнтервал:
Закладка: