Коллектив авторов - Океанография и морской лед

Тут можно читать онлайн Коллектив авторов - Океанография и морской лед - бесплатно ознакомительный отрывок. Жанр: geography_book, издательство Array Литагент «Паулсен», год 2011. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Океанография и морской лед
  • Автор:
  • Жанр:
  • Издательство:
    Array Литагент «Паулсен»
  • Год:
    2011
  • Город:
    Москва
  • ISBN:
    978-5-98797-065-2
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Коллектив авторов - Океанография и морской лед краткое содержание

Океанография и морской лед - описание и краткое содержание, автор Коллектив авторов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В данном томе трудов Международного полярного года (МПГ 2007/2008) отражены результаты исследований, выполненных в рамках научной программы участия Российской Федерации в проведении МПГ по направлению 1 «Гидрометеорологические и гелиогеофизические условия полярных областей» в разделе «Морская среда полярных океанов и морей, морские льды».

Океанография и морской лед - читать онлайн бесплатно ознакомительный отрывок

Океанография и морской лед - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Коллектив авторов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Одним из методов объективного оценивания возрастных градаций ледяного покрова является метод нейронных сетей (НС) ( Bogdanov, 2005; Hara et al., 1994 ), широко применяемый при обработке данных дистанционного зондирования благодаря ряду преимуществ перед традиционно используемыми статистическими методами классификации. Нейросетевые алгоритмы показывают лучшие результаты при наличии спекл-шума в спутниковых радиолокационных данных. Обученные НС имеют более высокое быстродействие, что позволяет использовать их для обработки больших массивов информации. Это особенно важно при оперативной работе со спутниковыми изображениями с высоким пространственным разрешением. Наиболее сложной задачей является настройка (тренировка) НС с использованием обучающей выборки. При распознавании образов, где обучающая выборка может не охватывать всех возможных состояний данных, важнейшим свойством НС становится способность классифицировать вектора данных, которые не использовались при тренировке алгоритма, то есть способность к обобщению. Это свойство позволяет использовать нейронные сети как универсальный классификатор в задачах дистанционного зондирования.

Метод НС был применен в ААНИИ для разработки метода картирования ледяного покрова по спутниковой радиолокационной информации SAR. На начальном этапе были определены текстурные характеристики изображения. Текстура изображения определяется статистическими взаимосвязями значений соседних пикселей радиолокационного изображения, что выражается в виде «узора» или «рисунка», воспринимаемого глазом при визуальном анализе изображения. Особенности формирования ледяного покрова, стадии его развития, состояние поверхности и другие факторы определяют внешний вид текстуры изображения. Характеристики текстур различных типов поверхностей вычисляются на основе матрицы совместной встречаемости уровней яркости.

Статистический анализ полученных текстурных характеристик показал, что корреляция, инерция и выпуклость кластера – это наиболее значимые признаки. Энергия, гомогенность и энтропия менее значимы, однако являются источниками дополнительной информации. Целесообразность использования этих характеристик подтверждена корреляционным анализом. Яркости SAR-изображения, как известно, подвержены значительному краевому эффекту: уменьшение удельной эффективной площади рассеяния (УЭПР) электромагнитных импульсов морским льдом с увеличением угла зондирования приводит к значительному уменьшению сигнала в дальней части полосы обзора относительно ближней. Для получения равноконтрастного изображения по всей полосе обзора была разработана методология приведения УЭПР морских льдов к одному углу зондирования ( Александров, Пиотровская, 2008а; 2008б ). Алгоритм приведения изображения к фиксированному углу зондирования включает в себя пересчет яркости SAR-изображения в значение УЭПР для данного угла зондирования, пересчет полученного значения для угла зондирования 25° и пересчет скорректированной УЭПР в новое значение яркости по ранее определенным коэффициентам, уникальным для каждого класса льда (однолетнего, однолетнего деформированного и старого льда).

Верификация алгоритма оценки возрастных градаций льда по методу НС проводилась в период Международного полярного года, на акватории российской Арктики, в частности, по району дрейфа СП-35. Были использованы SAR-изображения с европейского спутника Envisat с разрешением 150 м и полосой обзора 400 км. Благодаря высокоширотному положению траектории дрейфа станции, ее изображение (точнее морских льдов в области станции) можно было получать практически ежедневно. Согласно экспертной оценке, ледяное поле, на котором был построен лагерь дрейфующей станции, состояло из смерзшихся обломков полей старого льда различных размеров, толщины и конфигурации. Монолитные обломки полей старого льда разделены полосами однолетнего льда с включениями битого старого льда. Поэтому сеть настраивалась на выделение на спутниковой сцене трех классов: старого льда, однолетнего ровного льда и однолетнего деформированного льда. Для обучения этой сети использовался стандартный алгоритм обратного распространения ошибки. Сеть была настроена на классификацию SAR-изображений центрального района Арктики в зимний период года. Полученные результаты классификации соответствовали результатам экспертного дешифрирования. Рассчитанные ошибки классификации составили: для однолетнего ровного льда 15 %, для однолетнего деформированного льда 17 % и для старого льда 20 %. Обученная сеть также была использована для автоматического картирования этих же возрастных градаций льда по данным Envisat в Арктическом бассейне (рис. 1).

Рис 1 Картирование возрастных стадий льда в Арктике с помощью метода - фото 28

Рис. 1. Картирование возрастных стадий льда в Арктике с помощью метода нейронных сетей по данным Envisat. 16.01.2008 (слева – исходный снимок, в центре – снимок с угловой коррекцией, справа – классифицированное изображение) 1 – старый лед; 2 – однолетний ровный лед; 3 – однолетний деформированный лед

Для использования метода НС в автоматическом режиме, с целью оперативного картирования возрастных стадий льда, необходима настройка сети в направлении выделения большего количества классов ледовых образований.

Определять возрастной состав морских льдов по спутниковым данным в автоматизированном режиме можно также с помощью методов теории вероятности, в частности, применяя формулу Байеса для расчета апостериорной вероятности p( ω j /x i )

pj/x i ) = p ( x ij ) × pj ) /p ( x i ) , p ( x i ) = картинка 29 p ( x ij ) × pj ),

где pj ) – априорная вероятность, p ( x ij ) – условная плотность распределения величины x i в состоянии ω j .

Метод байесовской классификации обеспечивает оптимальное решение с точки зрения минимума вероятности ошибки. При классификации ледяного покрова на спутниковом снимке принимается решение в пользу того вида льда, для которого величина апостериорной вероятности p(ω j /x i ) максимальна.

Для того, чтобы применять правило Байеса, необходимо знать условные плотности распределения и априорные вероятности. В центральной части Арктики частная сплоченность многолетних льдов составляет около 90 % ( Johannessen et al., 2006 ). Исходя из этого, были выбраны следующие значения априорной вероятности появления многолетнего, ровного и деформированного однолетнего льдов: p(ω my )=0.9; p(ω fy )=0.05, p(ω fd )=0.05. Условные плотности распределения p(x i /ω j) рассчитывались по калиброванным изображениям со спутника Envisat, на которых экспертным путем выбирался ряд характерных участков каждого из рассматриваемых видов льдов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Коллектив авторов читать все книги автора по порядку

Коллектив авторов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Океанография и морской лед отзывы


Отзывы читателей о книге Океанография и морской лед, автор: Коллектив авторов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x