Коллектив авторов - Океанография и морской лед
- Название:Океанография и морской лед
- Автор:
- Жанр:
- Издательство:Array Литагент «Паулсен»
- Год:2011
- Город:Москва
- ISBN:978-5-98797-065-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - Океанография и морской лед краткое содержание
Океанография и морской лед - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Реально на конкретной акватории одновременно присутствуют льды различного времени образования. Спутниковая технология, основанная на данных ИК-каналов, должна позволять определять толщины различных возрастных стадий льда. Для этого по осредненным данным береговых станций конкретного моря о высотах снега и декадных суммах среднесуточных температур формируется оперативная база высот снега, расчетных и преобразованных толщин льда (приведенных к толщине незаснеженного льда), а также расчетных и преобразованных толщин снежно-ледяного покрова различного времени образования. Вычисления выполняются по десятисуточным периодам, соответственно с датами измерения толщин льда и снега припая береговыми станциями. На завершающем этапе формируется классификационная таблица, в которой для каждой возрастной стадии (с шагом 20 см) указывается средняя высота снега, преобразованные толщины и безразмерные параметры Q . С использованием этой таблицы исходное ИК-изображение трансформируется в спутниковое классифицированное изображение (карту-схему) возрастных градаций (толщин) льда.
Оценка точности разработанной технологии оценки толщин льда по спутниковым ИК наблюдениям проводилась с использованием синхронных наблюдений с ледоколов. Оказалось, что технология позволяет оценивать преобразованные и истинные толщины молодых и однолетних тонких льдов с погрешностью ±5–10 см, а однолетних средних – 10–15 см. Возрастные стадии определяются, как правило, безошибочно.
Оценка толщины ледяного покрова в арктических морях в весенний период. Анализ спутниковой информации ИК-диапазона по Карскому морю за разные годы, проведенный А.В. Бушуевым, показал, что удовлетворительное совпадение расчетных данных по толщине снежно-ледяного покрова и натурных наблюдений имело место только для зимнего периода, когда температура воздуха ниже −10 °C. При более высоких температурах воздуха расчеты давали значительную погрешность. Исследования возможных причин расхождения экспериментальных и натурных оценок позволили заключить, что основную роль в возникновении ошибок расчета играет неучет сезонного изменения теплопроводности снега.
Снег, как известно, имеет более низкую теплопроводность по сравнению со льдом, что объясняется обилием в снеге мелких воздушных пор. Установлено, что коэффициент теплопроводности плотного снега в 3 раза меньше коэффициента теплопроводности морского льда ( Дюнин, 1983 ). Весной снежный покров на поверхности морского льда меняет свои характеристики, главным образом, из-за изменения плотности снега.
Исследования показали, что в применяемой нами технологии оценки толщины снежно-ледяного покрова арктических морей в весенний период целесообразно использовать соотношение теплопроводностей льда и снега 3:1, а в зимний – 7:1. Эмпирическая зависимость параметра Q от толщины снежно-ледяного покрова для весеннего периода также берется иной по сравнению с зимним периодом. Для установления вида этой зависимости были использованы ледовые наблюдения в Карском море экспедиции ААНИИ «КАРА-2010» с борта дизель-электрохода «Мончегорск» в апреле-мае 2010 г. и снимки с радиометра AVHRR ИСЗ NOAA по району Карского моря. В результате была получена эмпирическая зависимость параметра Q от толщины снежно-ледяного покрова (рис. 4), характерная для весеннего погодного периода в Арктике, когда отмечаются слабые отрицательные температуры воздуха (до –10 °С). С использованием установленной зависимости по спутниковым данным AVHRR (рис. 5) были получены расчетные значения толщин льда (рис. 6).

Рис. 4 Зависимость параметра Q от толщины снежно-ледяного покрова, принимаемая для расчетов в зимнее время (1) и весеннее (2)

Рис. 5. Карское море 28 апреля 2010 г. Снимок AVHRR ИСЗ NOAA-16, 4 канал

Рис. 6. Толщина льда в Карском море 28 апреля 2010 г. по данным измерений температуры поверхности радиометром AVHRR/NOAA (в расчете использованы «весенние» значения параметра Q и коэффициент теплопроводности плотного снега; стрелками показан маршрут движения дизель-электрохода «Мончегорск» в период с 30.04 по 2.05.2010 г)
При положительных температурах воздуха на поверхности льдов образуется талая вода, экранирующая собственное излучение льда и ледовые наблюдения в ИК-диапазоне становятся невозможны.
Определение толщины льда по данным измерений в СВЧ-диапазоне. В микроволновом диапазоне возможности измерения толщины льда в значительной степени зависят от применяемой длины волны и чувствительности радиометра. Так, при рабочей длине волны 21 см максимальная толщина льда, которую можно измерить СВЧ-радиометром, составляет 173 см – при приборной чувствительности ∆Т=0,01 К и 132 см при ∆Т= 0,1 К. При рабочей длине волны 2 см максимальная измеряемая толщина льда составляет 27 см для аппаратуры с ∆Т= 0,01 К и 21 см – для ∆Т=0,1 К ( Ji et al., 2007 ). Толщину льда в микроволновом диапазоне лучше определять с помощью многочастотных СВЧ-радиометров, причем для тонких льдов лучше использовать коротковолновые каналы 8 мм – 5 см, а для толстых льдов – канал 21 см. В настоящее время отладка разработанной модели выполняется с использованием данных измерений самолетных СВЧ-радиометров ( Ji et al., 2007 ).
Комбинированные методы. В последнее время развиваются методы оценки толщины ледяного покрова с помощью спутниковой альтиметрии – лазеров и радаров-альтиметров. Луч лазера и луч радара обладают различной способностью проникновения в поверхностный слой снега: лазерный сигнал отражается от поверхности снега, а радарный проходит сквозь слой снега ( h s ) до поверхности льда. Таким образом, радары-альтиметры измеряют надводную толщину льда, а лазерные альтиметры – расстояние от спутника до верхней границы снежного покрова, находящегося на льду ( h f .). Комбинирование этих двух видов измерений позволит более точно оценивать толщину ледяного покрова ( h i ). Расчет h i . проводят по уравнению плавучести с учетом плотности морской воды (ρ w ), снега (ρ s ), и льда (ρ i) ( Connor et al., 2009 ):
Основным недостатком радаров-альтиметров является зондирование только вдоль узкой трассовой полосы и низкое пространственное разрешение (порядка 7 км для радара-альтиметра RA-2), что не позволяет в настоящее время рассматривать радары-альтиметры в качестве источников ледовых данных для решения оперативных задач.
Читать дальшеИнтервал:
Закладка: