Юлия Гледко - Общее землеведение
- Название:Общее землеведение
- Автор:
- Жанр:
- Издательство:Литагент Вышэйшая школа
- Год:2015
- Город:Минск
- ISBN:978-985-06-2608-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юлия Гледко - Общее землеведение краткое содержание
Для студентов географических специальностей учреждений высшего образования, преподавателей, специалистов в области физической географии, охраны природы и рационального природопользования.
Общее землеведение - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
2.2. Планетарные факторы
Форма Земли.Земля – третья от Солнца планета Солнечной системы и самая крупная планета земной группы. Вместе с Луной Земля образует систему – двойную планету.
Фигура Земли – понятие модельное, некоторая идеализация, с помощью которой стремятся описать форму планеты. В зависимости от цели описания пользуются различными моделями формы планеты – различными фигурами. Расположим известные модели в ряд от общих к более детализированным, считая их последовательными приближениями к истинной форме Земли (рис. 2).

Рис. 2. Представления о форме поверхности Земли (по Г.Н. Каттерфельду): 1 — сфера; 2 — эллипсоид вращения; 3 — геоид (кардиоид)
1. Первое приближение – сфера. Это наиболее общая модель формы нашей планеты. Сфера не имеет выраженной единственной оси симметрии, все ее оси равноправны, их бесчисленное множество, как и экваторов. Однако Земля, как уже отмечалось, имеет одну ось вращения и экваториальную плоскость – плоскость симметрии (а также плоскости симметрии меридианов). Это несоответствие сферической модели Земли ее реальной форме ощутимо проявляется при изучении горизонтальной структуры ГО, характеризующейся выраженной поясностью и известной симметрией относительно экватора (с элементами диссимметрии).
2. Второе приближение – эллипсоид вращения. Тип симметрии эллипсоида вращения отвечает указанным выше особенностям формы Земли (выраженная ось, экваториальная плоскость симметрии, меридиональные плоскости). Эта модель используется в высшей геодезии для расчета координат, построения картографических сеток и других вычислений.
3. Третье приближение – трехосный кардиоидальный эллипсоид вращения. В этой модели северный полярный радиус больше южного на 30-100 м.
4. Четвертое приближение – геоид. Понятие ввел в 1873 г. немецкий физик И.Б. Листинг. Геоид – уровенная поверхность, совпадающая со средним уровнем Мирового океана (МО) и являющаяся геометрическим местом точек пространства, имеющих одинаковый потенциал тяжести. Теоретически поверхность геоида в каждой точке перпендикулярна направлению силы тяжести (т. е. линии отвеса) и отождествляется со средним положением спокойной водной поверхности в океанах и открытых морях, мысленно продолженной также и под материками. Поверхность геоида всюду выпуклая (что отвечает выпуклости океанической поверхности).
Несмотря на всю сложность своей поверхности, геоид мало отличается от сфероида. Отклонения, за отдельными исключениями, составляют не более ±100 м, т. е. поверхность геоида редко выступает над поверхностью сфероида более чем на 100 м и редко погружается под поверхность сфероида более чем на такую же величину. Средняя же величина отступления геоида от наиболее удачно подобранного земного эллипсоида не превышает ±50 м.
Элементы земного эллипсоида, рассчитанные Ж.-Б.-Ж. Деламбром (1800), Ф.-В. Бесселем (1841), Д. Хейфордом (1909) и другими учеными, неодинаковы, так как вычислены по геодезическим измерениям разных по протяженности дуг меридианов и параллелей. Земной эллипсоид, принятый для обработки геодезических измерений и установления единой государственной системы координат, называется референц-эллипсоидом.
На территории СССР пользовались эллипсоидом Бесселя до 1946 г. Однако этот эллипсоид был рассчитан в основном по данным Западной Европы. На Дальнем Востоке его поверхность сильно уклонялась от поверхности Земли.
Более точные результаты размеров земного эллипсоида получены в 1940 г Ф.Н. Красовским и А.А. Изотовым по результатам астрономо-геодезических работ, выполненных на территории СССР, Западной Европы и США. Размеры земного эллипсоида, получившего название «референц-эллипсоид Красовского», были приняты для геодезических и картографических работ на всей территории СССР.
Отклонения поверхности референц-эллипсоида Красовского от поверхности геоида не превышают 150 м.
В настоящее время основные геометрические параметры общеземного эллипсоида определяются более точными методами с использованием искусственных спутников Земли. Для сравнения в табл. 2 приведены размеры земного эллипсоида, определенные Бесселем, Красовским и в глобальной геоцентрической системе координат WGS – 84 (World Geodetic System, 1984).
Таблица 2
Размеры земного эллипсоида

При картографических работах (составление карт мелких масштабов) Землю достаточно принимать за шар, объем которого равен объему земного сфероида. Исходя из размеров эллипсоида Красовского R = 6 371 110 м.
Значение астрономического положения Земли для природы ее поверхности:
1. Благодаря тому что в центре Солнечной системы находится одинарная звезда Солнце, орбитальное и осевое движение Земли, как и других планет, равномерно, и поэтому все природные процессы на Земле ритмичны, их колебания не выходят за критические для жизни пределы.
2. Так как Земля образована в ближайшей к Солнцу части прото-планетного облака, она состоит из тяжелых элементов, обеспечивших ее высокую плотность.
3. По этой же причине масса Земли достаточно велика (5,98 · 10 24кг), чтобы удержать около себя водород в количестве, необходимом для образования больших масс воды, но она не настолько огромна, чтобы подобно Юпитеру планета состояла в основном из водорода. Также следует отметить, что соответствующие плотность и масса Земли позволяют удерживать вокруг планеты атмосферу.
4. Земля находится на таком расстоянии от Солнца, при котором приливное трение невелико и планета быстро вращается вокруг оси.
5. Вместе с тем удаление Земли от Солнца благоприятно для температурного режима атмосферы.
Значение шарообразной формы Земли для природы ее поверхности:
1. Солнечные лучи на шаровую поверхность Земли падают на различных широтах под разными углами; интенсивность нагревания земной поверхности уменьшается от экватора к полюсам, что проявляется в распределении тепла, а следовательно, и разнообразии климатов.
2. В сочетании с вращением Земли в поле солнечной радиации шарообразность обусловливает зональность природы.
3. Влияние сферической формы проявляется в циркуляции воздуха, океанических течениях, приливно-отливных движениях воды и других географических явлениях.
4. Шарообразная форма планеты обусловливает разделение ее на освещенную и не освещенную Солнцем части (день и ночь), а следовательно, влияет на тепловой режим Земли.
Читать дальшеИнтервал:
Закладка: