Виктор Попенко - Секретные инструкции ЦРУ и КГБ по сбору фактов, конспирации и дезинформации
- Название:Секретные инструкции ЦРУ и КГБ по сбору фактов, конспирации и дезинформации
- Автор:
- Жанр:
- Издательство:АСТ, Кладезь
- Год:неизвестен
- Город:Москва
- ISBN:978-5-17-084476-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Виктор Попенко - Секретные инструкции ЦРУ и КГБ по сбору фактов, конспирации и дезинформации краткое содержание
Сегодня у вас есть редкая возможность — узнать основные исторические детали сложнейших операций ЦРУ и КГБ.
Инструкции по применению уникальных устройств, оружия, микрофототехники, скрытых микрофонов и диктофонов, используемых во время слежки и операций по сбору информации. Методы вербовки и переманивание агентов противника. Государственные перевороты и описание реальных операций, направленных на подрыв шпионской деятельности противника.
Эта книга содержит редкую информацию по подготовке секретных агентов ЦРУ и раскрывает особенности шпионских операций.
Секретные инструкции ЦРУ и КГБ по сбору фактов, конспирации и дезинформации - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Минокс («Minox»)
Популярным в ЦРУ, да и вообще во всех разведслужбах мира, фотоаппаратом является миниатюрный «Минокс» («Minox»).
Оригинальная камера «Минокс» после своего появления в 1938 году была воспринята как чудо современной технологии. Изобретатель «Минокса» латвийский инженер Вальтер Запп создал портативную камеру, умещавшуюся в ладони и способную делать высококачественные снимки в любой ситуации. В аппарате используется пленка в четверть ширины обычной 35-миллиметровой пленки с 50 кадрами. Пленка неперфорирована и заключается в специальную кассету. Хотя Запп готовил «Минокс» для фотографии общего пользования, очень скоро выяснилось, что малый размер и превосходная оптика как нельзя лучше подходят для шпионажа, тем более, что широкий комплект разработанных для аппарата аксессуаров позволил расширить диапазон его применения от скрытой съемки до фотографирования документов. И к началу 40-х годов «Минокс» стал наиболее широко применяемой шпионской фотокамерой.
Во время Второй мировой войны разведслужбы испытывали острый дефицит камер «Минокс».
Если на ранней стадии фотоувеличитель «Минокс» позволял изготовление небольших по размеру фотографий, то к концу Второй мировой войны были изготовлены улучшенные фотоувеличители, позволявшие получать фотографии большого формата.
После войны к камере были изготовлены специальные высокоразрешающие объективы, а с появлением специального набора для проявки пленки при дневном свете агент получил возможность проявить пленку «Минокса» при ясном дневном освещении. Проявочный бачок похож на маленькую бутылку. Процесс проявки требует очень мало химикатов, засыпающихся через специальный светозащищенный клапан.
Заканчивая разговор о самом известном «шпионском» фотоаппарате, можно отметить, что «Минокс» (в различных модификациях) со своим возросшим комплектом приспособлений держится на вершине своего класса до наших дней; современные фотоаппараты «Минокс» комплектуются многими приставками и могут производить съемку и ночью (в инфракрасном диапазоне), имеют вспышку, могут устанавливаться на специальный штатив, присоединяться к биноклю и т. п.
Наблюдение и съемка в невидимых лучах
Агентам часто приходится проводить операции по наблюдению и съемке ночью. Для этих целей применяются инфракрасные приборы, т. е. такие, действие которых основано на использовании инфракрасного (ИК) излучения (ИИ).
Инфракрасное излучение (ИИ) — это невидимое глазом электромагнитное излучение в пределах длин волн от 10 –3до 0,78.10 –6м. Оно занимает спектральную область между красным концом видимого света (с длиной волны у =0,74 мкм) и коротковолновым радиоизлучением (~ 1–2 мм). Инфракрасную область спектра обычно условно разделяют на ближнюю (от 0,74 до 2,5 мкм), среднюю (2,5–50 мкм) и далекую (50–2000 мкм).
ИИ было открыто в 1800 году, когда обнаружили, что в полученном с помощью призмы спектре Солнца за границей красного света (т. е. в невидимой части спектра) температура термометра повышается. В XIX веке было доказано, что ИИ подчиняется законам оптики и, следовательно, имеет ту же природу, что и видимый свет.
В 1923 году были получены радиоволны ~80 мкм, т. е. соответствующие инфракрасному диапазону длин волн. Таким образом, экспериментально было доказано, что существует непрерывный переход от видимого излучения к ИИ и радиоволновому а следовательно, все они имеют электромагнитную природу.
Спектр ИИ, так же как и спектр видимого и ультрафиолетового излучений, может состоять из отдельных линий, полос или быть непрерывным в зависимости от природы источника ИИ. Возбужденные атомы или ионы испускают линейчатые инфракрасные спектры. Например, при электрическом разряде пары ртути испускают ряд узких линий в интервале 1,014–2,326 мкм; атомы водорода — ряд линий в интервале 0,95–7,40 мкм. Возбужденные молекулы испускают полосатые инфракрасные спектры, обусловленные их колебаниями и вращениями. Колебательные и колебательно-вращательные спектры расположены главным образом в средней, а чисто вращательные — в далекой инфракрасной области. Так, например, в спектре излучения газового пламени наблюдается полоса около 2,7 мкм, испускаемая молекулами воды, и полосы 2,7 и 4,2 мкм, испускаемые молекулами углекислого газа. Нагретые твердые и жидкие тела испускают непрерывный инфракрасный спектр.
Нагретое твердое тело излучает в очень широком интервале длин волн. При низких температурах (ниже 800 К) излучение нагретого твердого тела почти целиком расположено в инфракрасной области и такое тело кажется темным. При повышении температуры доля излучения в видимой области увеличивается и тело вначале кажется темно-красным, затем красным, желтым и, наконец, при высоких температурах (выше 5000 К) — белым; при этом возрастает как полная энергия излучения, так и энергия ИИ.
Оптические свойства веществ (прозрачность, коэффициент отражения, коэффициент преломления) в инфракрасной области спектра, как правило, значительно отличаются от оптических свойств в видимой и ультрафиолетовой областях. Многие вещества, прозрачные в видимой области, оказываются непрозрачными в некоторых областях ИИ, и наоборот. Например, слой воды толщиной в несколько сантиметров непрозрачен для ИИ с Х >1 мкм (поэтому вода часто используется как теплозащитный фильтр), пластинки германия и кремния, непрозрачные в видимой области, прозрачны в инфракрасной (германий для у > 1,8 мкм, кремний для у > 1,0 мкм). Черная бумага прозрачна в далекой инфракрасной области. Вещества, прозрачные для ИИ и непрозрачные в видимой области, используются в качестве светофильтров для выделения ИИ. Ряд веществ даже в толстых слоях (несколько сантиметров) прозрачен в достаточно больших участках инфракрасного спектра. Из таких веществ изготавливаются различные оптические детали (призмы, линзы, окна и пр.) инфракрасных приборов. Например, стекло прозрачно до 2,7 мкм, кварц — до 4,0 мкм и от 100 мкм до 1000 мкм, каменная соль — до 15 мкм, йодистый цезий — до 55 мкм. Полиэтилен, парафин, тефлон, алмаз прозрачны для у > 100 мкм. У большинства металлов отражательная способность для ИИ значительно больше, чем для видимого света, и возрастает с увеличением длины волны ИИ. Например, коэффициент отражения Аl, Аu, Ag, Сu при у = 10 мкм достигает 98 %. Жидкие и твердые неметаллические вещества обладают в ИИ селективным отражением, причем положение максимумов отражения зависит от химического состава вещества.
Наличие в атмосфере взвешенных частиц — дыма, пыли, мелких капель воды (дымка, туман) — приводит к дополнительному ослаблению ИИ в результате рассеяния его на этих частицах, причем величина рассеяния зависит от соотношения размеров частиц и длины волны ИИ. При малых размерах частиц (воздушная дымка) ИИ рассеивается меньше, чем видимое излучение (что используется в инфракрасной фотографии), а при больших размерах капель (густой туман) ИИ рассеивается так же сильно, как и видимое.
Читать дальшеИнтервал:
Закладка: