Виктор Млечин - На передних рубежах радиолокации
- Название:На передних рубежах радиолокации
- Автор:
- Жанр:
- Издательство:Литагент «Алгоритм»1d6de804-4e60-11e1-aac2-5924aae99221
- Год:2013
- Город:Москва
- ISBN:978-5-4438-0578-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Виктор Млечин - На передних рубежах радиолокации краткое содержание
Радиолокация – это щит и меч страны, – убежден автор, стоявший у истоков создания и внедрения систем радиолокации в СССР, и лично знавший ведущих ученых в области космоса и радиоэлектроники: первого директора предприятия академика А. И. Берга, имя, которого ныне носит Центральный научно-исследовательский радиотехнический институт (ЦНИРТИ, ранее – ЦНИИ-108), министра радиопромышленности СССР П. С. Плешакова, академика А. А. Расплетина, других выдающихся ученых и главных конструкторов направлений.
Как известно, еще в 1905 г. во время русско-японской войны радисты русского флота впервые в мире создали активные помехи сетям радиосвязи японских кораблей. Но секретные работы в области радиолокации начались в 1930-х годах. Работы велись практически параллельно в СССР, США, Германии, Англии и Франции. В 1946 году американские специалисты – Реймонд и Хачертон, бывший сотрудник посольства США в Москве, написали: «Советские учёные успешно разработали теорию радара за несколько лет до того, как радар был изобретён в Англии».
В 1948 году автор попал в Центральный научно-исследовательский институт радиолокации (ЦНИИ-108), в 13 лабораторию, которой руководил А. А. Расплетин, знаменитый конструктор зенитно-ракетных систем.
Более 60 лет, проведенных на ответственном научном направлении, дает автору В. В. Млечину право передать свой бесценный опыт нынешним и будущим поколениям молодых специалистов и тем, кто интересуется закрытыми страницами истории СССР.
На передних рубежах радиолокации - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Кибернетика изучает поведение системы на моделях, отражающих с той или иной полнотой черты сходства с оригиналом. Подобие оригинала и модели обозначается обычно волнистой линией А – В. Существует ряд понятий, связанных с построением моделей. Так, если внутреннее содержание системы недоступно, а определяются лишь входные и выходные величины, говорят о системе как о чёрном ящике. Несмотря на отсутствие сведений о таких системах, встречаются объекты, одинаково реагирующие на внешние воздействия при одинаковом наборе входных и выходных величин. Такие системы называются изоморфными. При моделировании важно сохранение основных черт и свойств системы с одновременным упрощением в интересах проведения её анализа. Именно упрощённые или гомоморфные модели систем наиболее часто являются объектами исследований. Динамические системы, т. е. системы, переходящие из одного состояния в другое, могут находиться в одном из трёх режимов: равновесном, переходном или периодическом. Равновесный режим отличается постоянством координат системы и представляется в пространстве состояний неподвижными особыми точками или их совокупностью. Возможен также периодический (циклический) режим, когда система приходит в одно и то же состояние через одинаковые интервалы времени. Режим перехода из одного состояния в другое является переходным. По истечении переходного режима система может перейти в установившийся режим – равновесный или периодический.
Кардинальным понятием в кибернетике является устойчивость системы. Устойчивость определяет постоянство состояния системы или постоянство последовательности состояний в процессе движения. Возможен как аналитический, так и геометрический подход к проблеме устойчивости. Аналитический подход базируется на математических критериях устойчивости, среди которых фундаментальным является критерий, развитый А. М. Ляпуновым. В простейшем пересказе этот критерий звучит так: равновесное состояние устойчиво, если, начавшись вблизи него, движение никогда не достигнет границ заранее оговорённой, достаточно малой, области, окружающей точку равновесия. Геометрический метод определения устойчивых и неустойчивых особых точек равновесия, а также устойчивых и неустойчивых движений основан на построении фазового пространства. В простейшем случае фазовое пространство представляется в виде фазовой плоскости, по одной из осей которой отложена координата системы, а по другой скорость её изменения. Через каждую точку фазового пространства проходит фазовая траектория, по которой движется изображающая точка. Направление движения ориентировано к устойчивой точке равновесия или от неё – в случае неустойчивости. При периодическом движении изображающая точка движется по замкнутой кривой, называемой предельным циклом. Предельный цикл устойчив, если траектория из начального состояния направлена к нему (циклу), и неустойчив, если изображающая точка сходит с него.
Большой круг задач, исследуемых в кибернетике, связан с управлением объектами. Управление действует на объект таким образом, что улучшается его функционирование или развитие. Управляемый объект вместе с управляющим устройством образует систему управления. Управление обычно производится через исполнительные органы. Различают четыре основных типа задач управления: стабилизация, программное управление, слежение, оптимизация. При стабилизации поддерживается значение некоторой управляемой величины X вблизи неизменного параметра Х 0в условиях негативного воздействия возмущений на указанную величину. Так, в системах энергоснабжения поддерживается величина напряжения и частота тока в сети при изменяемом потреблении энергии. Программное управление имеет место при изменении параметра Х 0по заранее известному закону (по программе). В качестве примеров можно назвать вывод ракеты на заданную траекторию полёта, перемещение трубы телескопа по программе с учётом вращения Земли. Если зависимость Х 0от времени заранее неизвестна и требуется возможно более точное соответствие состояния системы Х ( t ) изменяющемуся параметру Х 0( t ), необходим процесс слежения за этим параметром. Например, управление производством товара при непредвидимых изменениях спроса, в живых организмах изменение ритма и глубины дыхания при вариациях физической нагрузки и т. д. Задача оптимизации состоит в установлении наилучшего по определённому критерию режима работы управляемого объекта. К этим задачам в экономике относятся, например, задачи максимизации прибыли, минимизации потерь сырья и другие подобные задачи.
Различают разомкнутые и замкнутые системы управления. В разомкнутых системах информация о состоянии управляемого объекта не используется в управляющем воздействии. Если эта информация закладывается в устройстве управления объектом, система называется замкнутой. В соответствии со сказанным зависимость выходной координаты Y j j -го элемента системы от входной координаты X i i -го элемента определяется как прямая связь от i -го элемента (вход) к j -му (выход). И наоборот, зависимость координат входного элемента от координат выходного элемента определяется в замкнутых системах как обратная связь. Различают положительную и отрицательную обратную связь в зависимости от знака её приложения в управляющем устройстве. Кроме того, возможна мгновенно действующая связь и связь с запаздыванием. В последнем случае запаздывание может обусловливаться как инерционными свойствами связи, так и наличием элементов памяти в цепи передачи. Важное значение имеют системы, созданные человеком, но работающие без его непосредственного участия, так называемые системы автоматического управления. Они состоят из объекта управления, измерителя его состояния, управляющего и исполнительного звеньев. Точность работы таких систем определяется их добротностью, т. е. произведением коэффициентов передачи прямой и обратной связи в режиме разомкнутой обратной связи. Однако повышение добротности системы может привести к уменьшению запаса её устойчивости.
Мы говорим о системе автоматического управления как о системе с установившейся структурой и предсказуемой формой поведения. Реакция таких систем определяется характером внешних воздействий и свойствами возможных возмущений. Однако в условиях изменяющихся факторов существования самой системы, в условиях частичной неопределённости среды, при которых механизмы действия системы неспособны подобрать нужную реакцию, возникает необходимость изменения структуры системы и форм её поведения. Процесс изменения свойств системы, позволяющий ей достигнуть приемлемого или даже оптимального состояния в условиях изменяющихся внешних или внутренних факторов, называется адаптацией. Яркий пример адаптации состоит в приспосабливаемости живых организмов к изменениям внешней среды или условий существования. Для технических или экономических систем адаптация выражается в виде изменения режима работы, вариаций структуры построения, смены управляющих воздействий. Одним из наиболее часто используемых приёмов при адаптации является поиск опасных воздействий или объектов, а также поиск оптимальных режимов работы.
Читать дальшеИнтервал:
Закладка: