Владимир Губайловский - Люди мира. Русское научное зарубежье
- Название:Люди мира. Русское научное зарубежье
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2018
- Город:Москва
- ISBN:978-5-9614-5066-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Губайловский - Люди мира. Русское научное зарубежье краткое содержание
Однако при ближайшем рассмотрении проблема оказалась еще сложнее. Мы не собирались ограничиваться рассказом только лишь об эмигрантах: русское научное зарубежье — понятие значительно более широкое. Но даже если говорить именно об эмиграции, то самая высокая ее волна пришлась, как выяснилось, не на 1920–1930-е, а на 1895–1915 годы, и присутствие интеллигенции в этом потоке уже довольно заметно. Так что захват власти большевиками был не причиной, а скорее следствием вытеснения интеллектуальной элиты из страны. Тем не менее факт неоспорим: именно с их приходом процесс стал самоподдерживающимся, а поначалу даже лавинным. Для того чтобы как-то задержать отток интеллекта и культуры за рубеж, надо было поставить на его пути непреодолимую преграду — лучше всего частокол, колючую проволоку, вышки, солдат с собаками и автоматами…
Люди мира. Русское научное зарубежье - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Есть в этом, однако, некое противоречие. Его очень точно сформулировал академик Виталий Гинзбург (еще до того, как в 2003 году он стал лауреатом Нобелевской премии по физике):
…Роль случая, удачи может быть огромной. Для титанов типа Эйнштейна это не так, слишком большой «запас» и отрыв от других. Талант Максвелла, Бора, Планка, Паули, Ферми, Гейзенберга, Дирака тоже вряд ли сильно зависел от флуктуаций удачи, случайной мысли и т. п. Но другое дело, мне кажется, де Бройль, даже Шрёдингер, не говоря уже о многочисленных нобелевских лауреатах. Макс фон Лауэ был вполне квалифицированным физиком, но, как утверждают, мысль о дифракции рентгеновских лучей в кристаллах была «пивной идеей» (Bieridee). Брегги, Рентген, Зееман, Штарк, Ленард, Джозефсон, Пензиас и Вильсон, Хьюиш и Райль, Черенков, Басов и Прохоров — да три четверти всего списка — это в значительной мере удачи, а не «божественные» откровения. И это не обесценивает большинства работ и премий. Я хочу лишь подчеркнуть, что шансы на удачу зависят как от случая, так и от кучи факторов, среди которых и здоровье, и вовремя прочитанная статья или книга, и активность, и честолюбие (как стимул), и, вероятно, многое другое.
Понятно, что любые рейтинги ученых — дело не только очень сложное, но и чрезвычайно щекотливое. Вряд ли можно найти какой-то объективный критерий, который строго ранжировал бы, скажем, общую теорию относительности Эйнштейна, соотношение неопределенностей Гейзенберга и теорию цепных химических реакций Семенова. Как бы то ни было, исследования Гейма и Новоселова — простые, изящные, физически наглядные. Последнее немаловажно.
Наука вообще трудно визуализируемая область человеческой деятельности. В лучшем случае речь может идти о внешней атрибутике научной лаборатории, портретах ученых. Хотя, как это ни парадоксально, на протяжении всей своей истории Наука (с большой буквы) стремилась именно к тому, чтобы наглядно представить объекты и результаты своих исследований. Недаром эллины не различали понятий «видеть» и «знать». Поэтому неслучайно, что в сознание рядового, но любознательного гражданина глубже всего вошли научные понятия, которым был найден какой-либо образный эквивалент: яблоко Ньютона как иллюстрация закона всемирного тяготения; Луиджи Гальвани, заставляющий дергаться под воздействием электрических разрядов лягушачьи лапки; змея, кусающая себя за хвост, как образ бензольного кольца, открытого Кекуле; периодическая таблица химических элементов Менделеева; собаки академика Ивана Павлова; двойная спираль молекулы наследственности — ДНК, открытая Уотсоном и Криком; шотландская «овечка Долли» Иэна Уилмута как символ клонирования; астрофизическая «черная дыра» Стивена Хокинга…
Графен — из этой же серии примеров. Вот и российский историк химии Александр Смолеговский отмечает:
…Нанохимия не является новой наукой или новым разделом химии. Но она «принесла» новое мировоззрение — этап визуализации молекул. И хотя в принципе не наблюдается и новых соединений, факт получения известных веществ в новом состоянии не подлежит сомнению. Именно в этом отношении интересно открытие графена и понимание его структуры.
Кстати, еще до открытия графена Андре Гейм сумел создать в общественном сознании очень запоминающийся научный символ. И это была левитирующая, то есть парящая в воздухе без всяких механических приспособлений, лягушка. Знаменитое земноводное животное, внесшее выдающийся вклад в развитие естествознания (привет Луиджи Гальвани, а заодно и тургеневскому Базарову!), было подвешено Геймом в сильном магнитном поле — в миллион раз сильнее, чем естественное магнитное поле Земли. В 2000 году Андре Гейм и сэр Майкл Берри из Бристольского университета получили за это достижение так называемую Шнобелевскую премию — пародию на настоящую Нобелевскую награду. Шутки шутками, но ученые доказали, что всё — даже люди и уж точно лягушки — обладает магнитными свойствами. Правда, если у вас есть достаточно большой магнит…
Космология
Черные дыры и рябь пространства-времени: Рашид Сюняев
(Андрей Ваганов)
Карьеру академика Рашида Сюняева можно назвать звездной во всех смыслах. Главной темой его исследований со студенческих лет и на протяжении более чем полувека был и остается Космос — нейтронные звезды, галактики, метагалактики, черные дыры…
Самый цитируемый в мире астрофизик Рашид Алиевич Сюняев родился 1 марта 1943 года в Ташкенте. Фамилия Сюняевы происходит от пензенских мурз (князей), переселившихся затем на Урал и в Центральную Азию. Среди них встречались «служилые татары», торговцы и духовные лица. Один из дедов Рашида Сюняева был муллой, отец ученого, Али Абдрахман улы Сюняев — инженером. С детства Рашид свободно говорил на татарском и узбекском языках.
После окончания школы наш герой поступил одновременно в Московский физико-технический институт и на механико-математический факультет МГУ им. М. В. Ломоносова. А уже через два года после окончания этих двух, вероятно, самых престижных в СССР вузов защитил кандидатскую диссертацию в Институте прикладной математики Академии наук СССР. Руководителем его дипломной и кандидатской работ был замечательный ученый с мировым именем, трижды Герой Социалистического Труда, академик Яков Борисович Зельдович.
Сюняеву повезло учиться у самогó гениального Я. Б., как называли Зельдовича люди, работавшие с ним. Это дорогого стоит! Однажды Зельдович признался своему талантливому ученику:
Я много раз и радикально менял не только тематику исследований, но практически и специальность: был почти химиком, а в итоге стал почти астрономом. […] Трудно, но интересно освоить 10 процентов информации и специфических методов в любой области естественных наук, что необходимо для того, чтобы начать самостоятельно работать либо хотя бы спокойно ориентироваться в ней. Дальше путь от 10- до 90-процентного понимания — это одно удовольствие и истинное творчество. А вот пройти следующие 9 процентов — бесконечно тяжело и далеко не каждому под силу. Последний процент безнадежен. Разумнее вовремя взяться за новое дело…
Но Сюняев определился со сферой своих научных интересов сразу. Впрочем, сфера эта оказалась в буквальном смысле бесконечного радиуса…
В 1965 году, еще будучи студентом выпускного курса МФТИ, он предсказал существование в галактиках зон, ионизированных внешним излучением. Сюняев вычислил и доказал, что наблюдения водорода в периферийных областях галактик могут дать богатейшую информацию о потоке ионизирующего фонового излучения.
Когда в начале 1970-х годов не достигший еще и 30 лет ученый совместно со своим коллегой Николаем Шакурой опубликовал статью о модели падения вещества на черные дыры и нейтронные звезды, он сразу стал восходящей звездой мировой астрофизики. Эта публикация и до сих пор остается одной из самых цитируемых в этой области. Понять коллег-физиков можно: черная дыра, астрофизический объект, состоящий только из искривленного пространства (!), вдруг стал доступен для моделирования. Согласно этой модели вещество, падающее на черную дыру или нейтронную звезду, образует быстро вращающийся диск (аккреционный диск). Двигаясь в нем, вещество разгоняется и начинает излучать фотоны высоких энергий. Был сделан однозначный теоретический вывод: «Проглатывающие огромный объем материи черные дыры становятся наиболее мощными источниками излучения во Вселенной». Все это получило в физике название «стандартной теории аккреции» (падения вещества) на черные дыры и нейтронные звезды.
Читать дальшеИнтервал:
Закладка: