Станислав Улам - Приключения математика
- Название:Приключения математика
- Автор:
- Жанр:
- Издательство:Научно-издательский центр «Регулярная и хаотическая динамика»
- Год:2001
- Город:Ижевск
- ISBN:5-93972-084-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Станислав Улам - Приключения математика краткое содержание
Для широкого круга читателей — от студентов до специалистов-математиков и историков науки.
S. Ulam. Adventures of a Mathematician. Charles Scribner's Sons, New York, 1976.
Приключения математика - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Миссис Бриллюэн прекрасно разбиралась в живописи. В начале 20-х она приобрела по невысоким ценам множество работ Модильяни, Утрилло, Вламинка и других художников. В Мэдисоне она начала рисовать сама: писала маслом цветочные композиции, накладывая краску очень толстыми слоями — ее собственный стиль. В день, когда мы с Франсуазой поженились, Бриллюэны пригласили нас остановиться у них. Они устроили в нашу честь маленький прием, ставший для нас сюрпризом, и мы тогда пили французское шампанское и лакомились незабываемым тортом Стефы. Стефа почти не говорила по-английски, однако через несколько недель после своего приезда она, отправившись за чем-то по магазинам, обнаружила, что «lе centimetre d ’ ici» («сантиметр здесь»), как она называла наш дюйм, был в два с половиной раза больше «centimetre de France» («сантиметра во Франции»), Чтобы произвести эту довольно точную оценку (дюйм, как известно, равен 2,54 см), ей понадобилось лишь взглянуть на размеры материй, портьер и ковров. Тогда, в Мэдисоне, между нами зародилась близкая дружба, которая длилась очень долго, до их смерти несколько лет назад.
Еще до начала второго года своего пребывания в Мэдисоне, я получил повышение и занял должность старшего преподавателя — этот шаг внушил мне надежду и некоторую уверенность в материальных видах на будущее. Завести семью и в то же время поддерживать своего брата при моей скромной зарплате (в две тысячи шестьсот долларов в год) было нелегко. Часто, чтобы свести концы с концами, я наведывался в кредитный союз факультета, служащий которого с сочувствием предоставлял мне заемы до ста долларов, которые нужно было выплачивать через несколько месяцев.
Однажды меня попросили провести коллоквиум по математике, который проходил каждые две недели и предусматривал выступления как «местных», так и приезжих математиков. Замечу, что докладчикам платили до смешного мало; даже по тогдашним временам эти выплаты достигали всего около двадцати пяти долларов, включая расходы на дорогу.
Коллоквиум проходил иначе, чем в Польше, где докладчики выступали с десяти- или двадцатиминутными сообщениями в неофициальной обстановке. В Мэдисоне выступления длились по часу. Определенно, между краткими семинарскими сообщениями вроде тех, что были во Львове на собрании Математического общества, и своего рода лекциями, требующими изложения основных достижений, была разница. Последние, конечно, были лучше подготовлены, однако их формальность исключала некую спонтанность и стимул, который давали более краткие обмены мнениями. На этом коллоквиуме я познакомился с Андре Вейлем, талантливым французским математиком, приехавшим в начале войны в Южную Америку. Тамошние условия его не устроили, и он перебрался в Соединенные Штаты, где получил должность в университете Лехай. Мир уже знал Вейля благодаря его важной работе по алгебраической геометрии и общей алгебре. Его выступление на коллоквиуме было посвящено одному из важнейших его результатов по гипотезе Римана для полей с конечной характеристикой. Гипотеза Римана представляет собой утверждение, которое не так-то просто объяснить человеку, не знакомому с математикой. Она важна из-за своих многочисленных приложений в теории чисел. Около сотни лет эта гипотеза привлекала внимание многих величайших математиков. Справедливость ее не доказана по сей день, хотя уже имеется значительный прогресс на пути к возможному решению.
Декан Монтгомери, с которым я познакомился и подружился в Гарварде, приехал с докладом по моему приглашению. На факультете тогда была вакансия, и я попытался заинтересовать его предложением работать в нашем университете, самые старшие профессора которого, Ингрэм и Лангер, были двумя руками за его назначение; он вместо этого ушел в Йель. Позже он рассказывал мне целые истории о тогдашней обстановке в Йеле, которая в определенных кругах была ультра-консервативной. На собеседовании его спросили, как он относится к евреям в науке и является ли он либералом. Несмотря на то, что на оба вопроса он ответил «неверно» с точки зрения его собеседника, ему все же предложили место. Через несколько лет он ушел из Йеля в Принстонский институт.
Среди докладчиков также были Эйленберг и Эрдеш. Эрдеш был одним их тех немногих знакомых мне в ту пору моей жизни математиков, которые были моложе меня. Он был воистину вундеркиндом и опубликовал свои первые результаты в теории чисел и комбинаторном анализе в возрасте восемнадцати лет.
Он был евреем, и поэтому ему пришлось уехать из Венгрии, что, как оказалось, спасло ему жизнь. В 1941 году ему было двадцать семь, он был несчастен, тосковал по дому и беспрестанно волновался о судьбе своей матери, оставшейся в Венгрии.
Его приезд в Мэдисон ознаменовал начало нашей долгой, крепкой дружбы, порой на расстоянии. Будучи в стесненном материальном положении — «бедным», как говорил он сам — он стремился продлить свои визиты настолько, насколько это позволяло гостеприимство. К 1943 году он стал членом научного общества в Пердью и, наконец, перестал жить без гроша за душой — «даже без долгов», как он это называл. Во время этого и последующего визита мы проделали огромнейшую работу — наши математические дискуссии могло прервать лишь чтение газет или прослушивание аналитических радиопередач о военной и политической обстановке. Перед тем, как поехать в Пердью, он больше года пробыл в Принстоне, существуя там на жалкие гроши, чему впоследствии все же пришел конец.
Эрдеш был несколько ниже среднего роста, очень нервный и беспокойный. В то время он существовал в своем вечном движении еще активнее, чем сейчас, — то и дело подпрыгивая и размахивая руками. Глаза выдавали его постоянное размышление о математике, процесс, прерываемый только его пессимистичными заявлениями насчет политики, отношений в мире и общечеловеческих отношений, которые он видел в темном свете. Если ему приходила в голову какая-то забавная мысль, он вскакивал с места, размахивал руками и садился обратно. По силе своей преданности математике и постоянному размышлению над задачами он был похож на моих польских друзей и, если такое было возможно, даже превосходил их в этом. Особенностей в нем столько, что описать их все не представляется возможным. Одной из них был (и остается) его очень своеобразный язык. Такие его выражения, как «эпсилон» в значении «ребенок», «раб» и «босс» для, соответственно, «мужа» и «жены», «захват» — «брак», «проповедь» — «лекция» и множество других известных сейчас во всем математическом мире. Многие из наших совместно полученных результатов остались неопубликованными по сей день.
Прошли годы, а Эрдеш почти не изменился. Он все так же, без остатка, отдает себя математике и математикам. Сейчас ему за шестьдесят, и на его счету свыше семиста научных работ. Среди многочисленных поговорок о нем есть такая: «Ты не настоящий математик, если не знаешь Поля Эрдеша». Существует также знаменитое число Эрдеша — число «шагов», которые необходимо сделать математику, чтобы соединиться с Эрдешем в цепочке соавторов. «Число 2», например, значит иметь совместную работу с кем-то, кто написал работу с Эрдешем. Большинство математиков, как правило, находят цепочку с ним, если не в одно, так в два звена.
Читать дальшеИнтервал:
Закладка: