Станислав Улам - Приключения математика

Тут можно читать онлайн Станислав Улам - Приключения математика - бесплатно полную версию книги (целиком) без сокращений. Жанр: Биографии и Мемуары, издательство Научно-издательский центр «Регулярная и хаотическая динамика», год 2001. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Приключения математика
  • Автор:
  • Жанр:
  • Издательство:
    Научно-издательский центр «Регулярная и хаотическая динамика»
  • Год:
    2001
  • Город:
    Ижевск
  • ISBN:
    5-93972-084-6
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Станислав Улам - Приключения математика краткое содержание

Приключения математика - описание и краткое содержание, автор Станислав Улам, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Книга представляет собой автобиографию известного польского математика Станислава Улама. Широко известная на Западе, она так и не была переведена на русский язык. Книга написана в живом и ярком стиле, очень увлекательна, содержит много интересных исторических подробностей (из жизни С. Банаха, Дж. фон Неймана, Э. Ферми и др.).
Для широкого круга читателей — от студентов до специалистов-математиков и историков науки.
S. Ulam. Adventures of a Mathematician. Charles Scribner's Sons, New York, 1976.

Приключения математика - читать онлайн бесплатно полную версию (весь текст целиком)

Приключения математика - читать книгу онлайн бесплатно, автор Станислав Улам
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Еще одной вещью, которая также представляется необходимой, является знание хотя бы дюжины физических постоянных, причем знание не только численных их значений, но истинное понимание относительных порядков их величин и взаимосвязей, а также истинная способность «оценивать».

Я, конечно, знал несколько значений постоянных величин, в том числе скорость света и еще три-четыре других фундаментальных констант — постоянную Планка h , газовую постоянную R , и т. д. Очень скоро я узнал, что если «понять» не более чем дюжину других постоянных из области излучения и ядерной физики, можно почти осязаемо представить себе весь микромир и осуществлять над этой картинкой как количественные, так и качественные операции перед тем, как вычислить наиболее точные соотношения.

Большую часть той физики, которой занимались в Лос-Аламосе, можно было свести к изучению групп частиц, взаимодействующих друг с другом, сталкивающихся друг с другом, рассеивающихся, иногда создающих новые частицы. Как ни странно, действительно практические задачи требовали не столько математического аппарата квантовой теории, хоть именно он лежит в основе этих явлений, сколько динамики более классического рода — кинематики, статистической механики, гидродинамики, теории излучения и тому подобных исследований. Фактически, работа над этим проектом отличалась от исследования квантовой теории так же, как прикладная математика отличается от абстрактной. Если хорошо решаешь дифференциальные уравнения или умеешь применять асимптотические ряды, то тебе совсем необязательно знать основы «языка» функциональных пространств. Однако для фундаментального понимания знать их, безусловно, необходимо. Точно так же во многих случаях квантовая теория необходима, чтобы, например, объяснить данные или значения поперечных сечений. Но она не имеет решающего значения, как только приходит понимание идей, а затем и реальных процессов, связанных с нейтронами, взаимодействующими с другими ядрами.

В первый же день Теллер, в группе которого я должен был работать рассказал мне об одной задаче в математической физике, которая являлась частью необходимой теоретической работы по подготовке к развитию идеи «супербомбы», как тогда называли проектируемую термоядерную водородную бомбу. Сама идея о термоядерных реакциях, при которых высвобождались бы огромные количества энергии, была отнюдь не новой. В тридцатыхт годах роль этих реакций в процессах, протекающих внутри звезд, исследовалась в теоретических работах Джеффри С. Аткинсона и Фридриха Хоутерманса. Сама идея использования взрыва, возникавшего при делении ядер урана, для запуска термоядерной реакции является, я считаю, заслугой Теллера, Бете, Конопинского и, возможно, еще нескольких ученых.

Задача Теллера касалась взаимодействия электронного газа с излучением, и была связана скорее с возможностями термоядерной физики, чем с созданием атомной бомбы, что было главной задачей и сущностью работы в Лос-Аламосе. Он угадал формулу для передачи энергии, связанную с так называемым эффектом

Комптона, который касается скорости передачи энергии. Формула эта, имевшая под собой принцип размерности и являющаяся исключительно плодом его интуиции, была очень простой; он попросил меня попытаться вывести ее в более точном виде. Когда мне показали ее, я обратил внимание, что впереди не было никакого числового коэффициента. Мне это показалось удивительным. Через день-два я подробно расспросил его об этом, и он сказал: «О, коэффициент здесь должен равняться единице».

Это была первая в моей жизни техническая проблема из области теоретической физики, и я подошел к ней, руководствуясь весьма элементарными соображениями. Прочитав работы по статистической механике и свойствам полей излучения, я приступил к работе, исходя из весьма наивных и обыденных представлений о кинематике. Пустив в ход кой-какую арифметику, я получил формулу, очень похожую на формулу Теллера, однако стоящий впереди коэффициент, характеризующий скорость переноса, был приблизительно равен четырем. Это была никчемная, ничего не стоившая работа. Мои достаточно элементарные преобразования не удовлетворили Эдварда.

Вскоре после того, как я обсудил эту работу с Теллером, к его группе присоединился Генри Гурвиц-младший — молодой и более профессиональный физик-математик, который более искусно владел математическими приемами и уже работал со специальными функциями, применяемыми в этой задаче, благодаря чему он смог получить формулу, которая была намного грамотней моей и включала функции Бесселя. Точный численный коэффициент в ней на самом деле не слишком отличался от четверки. Если не ошибаюсь, это был корень из какой-то функции Бесселя.

Идея состояла в том, чтобы получить термоядерное вещество — дейтерий — для атомной бомбы и позволить последней воспламениться после взрыва помещенной в нее урановой бомбы. Большую проблему представляла детальная реализация этого процесса, ведь понять, как такое устройство может воспламениться, а не включиться в какой-нибудь бессвязный процесс, было отнюдь не просто. Кроме того, существовал, во всяком случае теоретически, риск получения более мощного взрыва по сравнению с планируемым и воспламенения всей земной атмосферы! Известный физик Грегори Брейт занялся подсчетом вероятности воспламенения атмосферы. И перед тем, как допустить даже мысль о том, чтобы заняться термоядерными реакциями, нужно было, конечно, свести эту возможность к нулю.

Кажется, именно Бете вместе с Эмилем Конопинским, известным физиком-теоретиком, предложил использовать место дейтерия тритий, так как он гораздо легче воспламенялся при определенной температуре в атомной бомбе. Такое техническое решение, принятое в ходе теоретической работы, объяснялось его превосходным знанием теоретической ядерной физики.

Бете был руководителем так называемого отдела теоретиков. Работы именно его и Роберта Ф. Бэгера из «Reviews of Modem Physics» стали «библией» для ученых, работавших в Лос-Аламосе, поскольку они содержали большую часть известных в то время теоретических понятий и экспериментальных фактов. Бете, который, кстати говоря, получил Нобелевскую премию за более раннее свое открытие механизма образования энергии в Солнце и других звездах (так называемый углеродно-азотный цикл), кроме всего прочего, виртуозно владел приемами математической физики. Как однажды выразился Фейнман в своей работе в Лос-Аламосе, исполненной строгости и решительности, он был подобен невозмутимо плывущему вперед линкору, окруженному флотилией более мелких судов — более молодых теоретиков лаборатории. Это один из немногих людей, к которым я, вначале питая уважение и только, а с годами стал испытывать неизменное восхищение и симпатию.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Станислав Улам читать все книги автора по порядку

Станислав Улам - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Приключения математика отзывы


Отзывы читателей о книге Приключения математика, автор: Станислав Улам. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x