Станислав Улам - Приключения математика
- Название:Приключения математика
- Автор:
- Жанр:
- Издательство:Научно-издательский центр «Регулярная и хаотическая динамика»
- Год:2001
- Город:Ижевск
- ISBN:5-93972-084-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Станислав Улам - Приключения математика краткое содержание
Для широкого круга читателей — от студентов до специалистов-математиков и историков науки.
S. Ulam. Adventures of a Mathematician. Charles Scribner's Sons, New York, 1976.
Приключения математика - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Число их применений в точных и естественных науках, а также в нашей повседневной жизни настолько велико, что можно говорить о начале «эры компьютеров и автоматов».
Но в то время компьютеры были еще только in statu nascendi [24] В состоянии зарождения (лат.) — Прим. ред.
. В шутку я предложил нанять для проведения расчетов по методу Монте-Карло несколько сотен китайцев из Тайваня, посадить их на корабль, вооружить каждого счетами или даже просто ручкой и бумагой и, дав им задание, предполагающее некий реальный физический процесс, бросание костей, к примеру, заставить тем самым получать случайные числа. Затем кто-нибудь собрал бы результаты и обобщил эти статистические данные в виде конкретных ответов.
Фон Нейману принадлежала ведущая роль в зарождении ЭВМ. Благодаря уникальному сочетанию своих талантов, интересов и особенностей характера, он прекрасно подходил для этой роли. Я думаю в этой связи о его способности и склонности доводить до конца каждую скучную деталь при программировании, учитывать любую мелочь, связанную с представлением очень больших задач в «удобоваримой» для компьютеров форме. Именно понимание и знание деталей систем математической логики и теоретической структуры формальных систем позволило ему придумать гибкое программирование. Это было великим его достижением. Благодаря составлению соответствующих блок-схем и программ, стало возможным рассчитывать на одной машине огромное разнообразие задач, ничего не меняя при этом в соединениях. До его изобретения каждый раз, когда задача менялась, приходилось выдергивать провода и заново соединять платы.
В конкретную форму со всеми сопутствующими зачатками теории метод Монте-Карло был приведен после того, как я обсудил возможности таких вероятностных схем с Джонни во время одной из наших бесед в 1946 году. Это была особенно длинная дискуссия в служебной машине, на которой мы ехали из Лос-Аламоса в Лэми. Мы проговорили всю нашу поездку, и я до сих пор помню, что именно я говорил на каждом повороте дороги и у каждой скалы, мимо которой мы проезжали. (Я упомянул об этом как о возможном примере работы «многоотсекового» хранилища памяти в мозгу, так же, как в случае, когда мы часто запоминаем место на странице, где находятся конкретные уже прочитанные нами абзацы — на правой или левой странице, вверху или внизу и т. п.) После этого разговора мы вместе разработали математические основы этого метода. На мой взгляд само название — Монте-Карло — весьма способствовало популяризации этой процедуры. А названа она была так из-за присутствия в ней своеобразного элемента везения — получения случайных чисел, с которыми играют в соответствующие игры.
Джонни сразу же понял, каким огромным может быть масштаб применения этого метода, хотя в первый час нашей дискуссии и высказывал определенный скептицизм. Однако, когда я начал приводить все более убедительные доводы, упомянув о статистических данных, говорящих о том, как часто возникает потребность в расчетах для получения приблизительных результатов с той или иной вероятностью, он согласился со мной и, призвав свою изобретательность, принялся отыскивать оригинальные технические приемы, которые позволили бы сделать эти методы более простыми и эффективными.
Фактом является то, что «Монте-Карло» никогда не дает точного ответа; правильнее сказать, что он позволяет сделать выводы о том, каков ответ, каковы его погрешность и вероятность (то есть на какую малую величину вероятность отличается от единицы). Иначе говоря, он производит оценку значениям чисел, искомым в данной задаче.
С «пропагандистскими» докладами по этому методу я выступал много и по всем Соединенным Штатам. Очень скоро появился интерес к этой теории и предложения по ее усовершенствованию. Вот простой пример этой процедуры, которым я частенько ее иллюстрировал: возьмем расчет объема области, определяемой рядом уравнений или неравенств в пространствах с большим количеством измерений. Вместо использования классического метода приближения чего бы то ни было с помощью сетки, состоящей из точек или «ячеек», которые заключали бы в себе миллиарды отдельных элементов, здесь можно просто выбрать наугад несколько тысяч точек и, произведя выборку, получить представление об искомой величине объема.
Самые первые вопросы были связаны с получением случайных или псевдослучайных чисел. Быстро были придуманы приемы, позволившие получать их с помощью самого компьютера независимо от какого бы то ни было внешнего «физического» механизма. (Прекрасно подошли бы и излучение от радиоактивного источника или космическое излучение, не будь эти процессы слишком медленными.) Отдельно от создания точной, или «правдивой», имитации физического процесса на ЭВМ началась разработка целого подхода к изучению математических уравнений, которые, казалось бы, на первый взгляд не имеют никакого отношения к вероятностным процессам, диффузии частиц или лавинообразным процессам. Вопрос состоял в том, как привести такие операторные или дифференциальные уравнения к виду, допускающему возможность вероятностного толкования. Это одно из главных применений метода Монте-Карло, и возможности его еще не исчерпаны. Я перефразировал бы одно из утверждений Лапласа. Он утверждает, что теория вероятностей — это ни что иное, как приложение математического анализа к здравому смыслу. Тогда метод Монте-Карло — это приложение здравого смысла к математическим формулировкам физических законов и процессов.
В гораздо более общем смысле компьютерам было суждено изменить само лицо технологии. Мы без конца обсуждали множество возможностей. Но даже фон Нейман не мог предвидеть их коренного экономического или технологического воздействия. В 1957 году, когда он умер, эти аспекты все еще находились в зародышевом состоянии, если говорить о возможностях их применения в промышленности. А в 1946 году мы вряд ли могли даже догадываться о том, что к 1970 году ежегодный оборот компьютерного рынка будет составлять пятьдесят миллиардов долларов.
Почти сразу после войны Джонни и я начали обсуждать возможности использования компьютеров в эвристических методах для постижения святая святых вопросов чистой математики. С помощью примеров и наблюдения свойств специальных математических объектов можно было рассчитывать на отыскание ключей к пониманию поведения общих утверждений, которые были проверены на примерах. Помню, в 1946 году я предложил вычислить огромное количество первообразных корней из целых чисел, с тем чтобы, изучив распределение и получив достаточно статистических сведений об их появлении и комбинаторном поведении, можно было представить себе, как сформулировать и доказать какие-нибудь возможные общие закономерности. Не думаю, правда, что до сегодняшнего дня эта специальная программа получила какое-нибудь развитие. (В математической исследовательской работе с компьютерами я особенно тесно сотрудничал с Майроном Стейном и Робертом Шрандтом. В последующие годы во многих своих напечатанных работах я предложил — и в некоторых случаях решил — множество задач из чистой математики с применением подобного экспериментирования или даже просто «наблюдения». Возможны и очень часто применимы в «чистейших» областях математики Gedanken-эксперименты, иначе говоря, мыслительные эксперименты Эйнштейна. Одна из моих работ с обзором области исследования «нелинейных задач» была написана совместно с Полем Стейном. К настоящему моменту по этой области можно привести целый список литературы.
Читать дальшеИнтервал:
Закладка: