Станислав Улам - Приключения математика

Тут можно читать онлайн Станислав Улам - Приключения математика - бесплатно полную версию книги (целиком) без сокращений. Жанр: Биографии и Мемуары, издательство Научно-издательский центр «Регулярная и хаотическая динамика», год 2001. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Приключения математика
  • Автор:
  • Жанр:
  • Издательство:
    Научно-издательский центр «Регулярная и хаотическая динамика»
  • Год:
    2001
  • Город:
    Ижевск
  • ISBN:
    5-93972-084-6
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Станислав Улам - Приключения математика краткое содержание

Приключения математика - описание и краткое содержание, автор Станислав Улам, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Книга представляет собой автобиографию известного польского математика Станислава Улама. Широко известная на Западе, она так и не была переведена на русский язык. Книга написана в живом и ярком стиле, очень увлекательна, содержит много интересных исторических подробностей (из жизни С. Банаха, Дж. фон Неймана, Э. Ферми и др.).
Для широкого круга читателей — от студентов до специалистов-математиков и историков науки.
S. Ulam. Adventures of a Mathematician. Charles Scribner's Sons, New York, 1976.

Приключения математика - читать онлайн бесплатно полную версию (весь текст целиком)

Приключения математика - читать книгу онлайн бесплатно, автор Станислав Улам
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Кажется, что в науке, особенно в математике, существует похожий магический интерес — интерес к определенным алгоритмам. Такие алгоритмы способны сами давать решения задач или «открывать окна» новых перспектив. И то, что в начале казалось лишь инструментом для достижения частной цели, может в итоге повлечь какие-нибудь новые неожиданные и непредсказуемые применения.

Кстати, мне в голову пришла любопытная философская головоломка, и я не знаю, как ее решить. Рассмотрим игру солитер или же какую-нибудь игру между двумя игроками и допустим, что в ходе игры участники могут сжульничать один или два раза. Например, если в пасьянсе «Канфилд» поменять положение одной или двух карт один и только один раз, игра не нарушится. Она по-прежнему останется точной, полной, имеющей математический смысл, но станет другой игрой. Просто она станет чуть более насыщенной, более общей. Но если рассмотреть математическую систему и допустить одно или два ложных утверждения, результат немедленно станет бессмыслицей, потому что имея ложное утверждение можно вывести все, что душе угодно. В чем же кроется разница? Возможно, она кроется в том, что в игре допускается лишь один определенный класс действий, тогда как в математике лишь однажды введя неверное утверждение, можно получить такой вот вывод: ноль равен единице. Тогда, очевидно, должен существовать и способ обобщения математической игры, так чтоб можно было совершить несколько ошибок и вместо полной чепухи получить только более широкую систему.

Мы с Хокинсом размышляли над следующей связанной с этим задачей: вариация игры «Двадцать вопросов». Один человек задумывает число в интервале от единицы до одного миллиона (который как раз меньше, чем 2 20). Другому человеку позволяется задать до двадцати вопросов, на каждый из которых первый участник должен отвечать только «да» или «нет». Очевидно, что число можно угадать, если сначала спросить: это число в первой половине миллиона? В следующем вопросе опять ополовинить получившийся интервал чисел и так далее. В конечном итоге, число можно угадать менее чем за log 2(1000000) раз. Предположим теперь, что участник имеет право солгать один или два раза. Сколько вопросов потребуется, чтобы получить верный ответ? Ясно, что для того, чтобы угадать одно из 2 n чисел, требуется более n вопросов, поскольку о том, когда была сказана ложь, неизвестно. В общем виде эта задача не решена.

В своей книге о нерешенных задачах я утверждаю, что многие математические теоремы можно «payzise» (греческое слово, слово, которое значит «обыграть»). То есть их можно сформулировать на языке теории игр. Например, достаточно общую схему игры можно представить следующим образом:

Предположим, что N — данное целое число, а два игрока должны осуществить две перестановки N букв ( n 1, n 2,…n N ). Для этого два игрока действуют по очереди следующим образом. При первой перестановке первый игрок забирает букву n 1, второй — n 2, первый — n 3и так далее. В конце концов первая перестановка заканчивается. Затем они разыгрывают вторую перестановку и если две перестановки образуют группу всех перестановок, выигрывает первый игрок, в противном случае выигрывает второй. У кого в этой игре выигрывающая стратегия? Это лишь скромный пример того, как в любой области математики — в данном случае в теории конечных групп — можно придумать «игроподобные» схемы, которые приводят к чисто математическим задачам и теоремам. Можно задавать вопросы и другого рода, например: каковы шансы, если это делается наугад? В этом случае задача объединит в себе и теорию меры, и теорию вероятностей, и комбинаторику. Можно продолжать в таком духе и рассматривать многие области математики.

К концу девятнадцатого века теория множеств совершила переворот в математике. Все началось с того, что Георг Кантор доказал (вернее открыл), что континуум не является счетным множеством. Он не единственный размышлял о логике бесконечности — были еще его предшественники Вейерштрасс и Больцано, однако первое тщательное изучение степеней бесконечности было проведено, конечно, им. Оно возникло из изучения им тригонометрических рядов и, вобрав в себя аромат математики, быстро приняло математическую форму. Дух этой теории в значительной степени проник в математику; недавно она получила новое и технически совершенно неожиданное, обновленное развитие как в самой абстрактной форме, так и в форме непосредственных приложений. Нужно заметить, что формулировки топологии, алгебраических идей в самой общей форме получили импульс и направление от деятельности польской школы, которая в значительной степени была представлена во Львове, где интересы сконцентрировались, грубо говоря, вокруг функционального анализа в геометрическом и математическом смысле.

Можно привести следующее чрезмерно упрощенное описание того, что послужило началом этой деятельности. Начатый Кантором и математиками французской школы — Борелем, Лебегом и другими — этот род исследований прижился в Польше. В своей книге «Блестящие иммигранты» («Illustruous Immigrants») Лаура Ферми восхищенно удивляется тому, сколь многие из работавших в США польских математиков проделали так много важной работы для процветания этой области. Тех, кто приехал сюда, чтобы жить и продолжать эту работу, тоже было немало. Изучение анализа, одновременно проводимое Гильбертом и другими немецкими математиками, привело к появлению простой, общей математической структуры бесконечномерных функциональных пространств, которую впоследствии также развила польская школа. А независимая и одновременная работа Мура, Веблена и других ученых Америки сделала возможной встречу геометрических и алгебраических взглядов и объединение разных направлений математической деятельности, хотя, конечно, только в некоторой степени.

Такое чувство, что, несмотря на растущее разнообразие и даже «сверхспециализацию», выбор предметов для исследований в математике определяется широко распространенными общими течениями, линиями и тенденциями, идущими от независимых источников.

Несколько индивидуумов, располагающих несколькими определениями, могут разбудить целую лавину работы в специальных областях. Отчасти это обусловлено модой и стремлением увековечить себя исключительно под влиянием учителей. Когда я впервые приехал в эту страну, то поразился показавшейся мне чрезмерной сосредоточенности на топологии. Теперь мне кажется, что, возможно, слишком большая работа идет в области алгебраической геометрии.

Второй вехой стала работа Геделя, которую в недавнем времени сделали более специфичной результаты Пола Коэна. Гедель, математический логик из Принстонского института перспективных исследований, установил, что любая конечная система аксиом или даже счетно бесконечная их система в математике позволяет сформулировать внутри этой системы имеющие смысл утверждения, которые являются неразрешимыми — то есть внутри системы нельзя ни доказать, ни опровергнуть их истинность. Коэн открыл целый класс новых аксиом бесконечности. Сегодня существует масса результатов, свидетельствующих о том, что наша интуиция, благодаря которой мы понимаем бесконечность, не обладает полнотой. Они позволяют раскрыть таинственные области нашей интуиции для понимания разных концепций бесконечности. Это, в свою очередь, оказывает косвенное влияние на изменение философии математического фундамента, показывая, что математика — это вовсе не законченный предмет, основанный на неизменных, уникальным образом подобранных законах, как было принято считать раньше, а генетически развивающаяся наука. Эту точку зрения еще не приняли сознательно, а ведь она указывает путь к иным перспективам. Математики изучают бесконечность воистину плодотворно, так что можно ли знать, как изменится наше отношение к этому понятию за следующие пятьдесят лет?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Станислав Улам читать все книги автора по порядку

Станислав Улам - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Приключения математика отзывы


Отзывы читателей о книге Приключения математика, автор: Станислав Улам. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x