Эндрю Ходжес - Игра в имитацию
- Название:Игра в имитацию
- Автор:
- Жанр:
- Издательство:АСТ
- Год:2015
- Город:Москва
- ISBN:978-5-17-089741-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эндрю Ходжес - Игра в имитацию краткое содержание
Национальный совет кинокритиков США и Американский институт киноискусства включили «Игру в имитацию» в топ 10 фильмов 2014 года. Также фильм получил пять номинаций на премию «Золотой глобус».
Настало время миру узнать о Тьюринге.
Игра в имитацию - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Довольно объемистая статья, полная новых идей, с проделанной большой технической работой и ощущением, что множество мыслей не умещались в рамки печатного слова. Работа «Вычислимые числа», должно быть, полностью вырвала Алана из привычной жизни на целый год, начиная с весны 1935 года. Где-то в середине апреля следующего года, вернувшись из поездки в Гилфорд на пасхальные каникулы, он передал машинописный текст работы лично в руки Ньюману.
Оставалось множество вопросов без ответа относительно открытий, совершенных Геделем и Аланом, и того, что имели в виду под свои описанием разума. В конечном решении программы Гильберта оставалось много неопределенностей, хотя оно определенно подавило надежду слишком наивного рационализма иметь возможность решить любую проблему путем вычисления. Для некоторых, включая самого Геделя, неудача попытки доказать последовательность и полноту математики служило новым примером превосходства разума над механизмом. С другой стороны, машина Тьюринга открыло возможности для новой области детерминистической науки. Она служила моделью, в которой наиболее сложные процессы строились из элементарных составляющих — состояний и позиций, считывания информации и ее записи. Вместе с тем она предполагала под собой чудесную математическую игру ума, в которой любой «определенный метод» представлялся в стандартной форме.
Алан доказал, что не существует никакой сверхъестественной машины, которая смогла бы решить все математические проблемы, но в ходе своего доказательства он открыл нечто столь же удивительное: идею универсальной машины, которая могла воспроизвести работу любой другой машины. Также ему удалось доказать, что любое действие, выполняемое человеком за машиной, могло быть произведено самой машиной без вмешательства человека. Таким образом, существовала единая машина, которая путем считывания помещенного на ленту описания работы других машин, могла производить тот же результат, что и умственная деятельность человека. Одна машина могла заменить операциониста! Электрический разум существует!
Между тем смерть Георга Пятого ознаменовала собой переход от протеста против старого порядка к страху перед тем, что могло ожидать впереди. Германия уже победила новое Просвещение и поставила железное клеймо на идеалистах. В марте 1936 года был снова оккупирован Райнленд, и это означало только одно: будущее теперь зависело от политики усиления военной мощи и подготовки к войне. Кто тогда мог увидеть во всем этом связь с судьбой кембриджского математика? И все же связь была, поскольку однажды Гитлер потеряет Райнленд, и именно тогда универсальная машина сможет найти в мире свое практическое применение. Эта идея появилась в результате личной потери Алана Тьюринга. Но между идеей и ее воплощением произойдет в результате жертвы миллионов людей. Но этим жертвам не придет конец даже после свержения власти Гитлера; для мировой Entscheidungs problem также не было найдено решения.
Глава 3
Новые люди
Я слышу, меня обвиняют, что я подрываю основы,
На самом же деле не против основ я и не за основы
(Что общего в самом деле с ними есть у меня? или что с разрушением их?),
Я хочу лишь одно учредить в Маннагатте и в городе каждом Соединенных Штатов,
Внутри страны и на море,
На полях и в лесах, и над каждым килем большим или малым, бороздящим воду,
Без учреждений и правил, ругательств или доказательств,
Основу нежной любви товарищей.
Почти в тот же день, когда Алан поделился с Ньюманом своим открытием, другой ученый закончил свою работу о доказательстве неразрешимости Entscheidungs-problem Гильберта. Им оказался выдающийся американский логик и профессор математики Принстонского университета Алонзо Чёрч, 15 апреля 1936 года завершивший свою работу по разработке теории лямбда-исчислений. Несмотря на то что основная идея работы Чёрча, доказывающая существование «неразрешимых проблем», была опубликована годом ранее, именно в тот момент ему удалось облечь свою мысль в форму ответа на вопрос Гильберта.
Таким образом, новая идея одновременно посетила два человеческих разума. Поначалу в Кембридже не было известно об этом исследовании, о чем можно судить из письма Алана матери от 4 мая:
Я встретил мистера Ньюмана спустя четыре дня после нашей последней встречи. Сейчас он занят своими исследованиями в других областях и поэтому не сможет уделить должного внимания моей теории на этой неделе. Тем не менее он изучил мои заметки относительно C.R. и после некоторых изменений все-таки одобрил. Позже один французский специалист проверил работу и выслал на публикацию. Однако, я так и не получил подтверждение, и нахожу этот факт весьма досадным. Не думаю, что полный текст работы будет готов за две недели или около того. Скорее всего, ее объем будет превышать пятьдесят страниц. Довольно трудно решить, какие тезисы лучше изложить в статье сейчас, а какие — оставить до следующего удобного случая.
Когда Ньюман все же прочитал статью Тьюрига где-то в середине мая, едва он мог поверить, что столь простая и ясная идея «машины Тьюринга» сможет решить проблему Гильберта, над которой многие ученые трудились в течение пяти лет с того момента, как Гёделю удалось решить некоторые вопросы Гильберта. Тогда он допустил мысль об ошибочности теории машин Тьюринга, поскольку более сложная машина могла бы решить «неразрешимую задачу». Но в конце концов он убедился, что ни одна машина с конечным набором действий не может выполнить больше операций, чем предложенное Тьюрингом устройство.
Спустя некоторое время статья Чёрча все же достигла берегов Европы. Его работа ставила под сомнение возможность публикации статьи Алана, поскольку научные журналы не позволяли печатать одинаковые исследования. Но теория Чёрча отличалась от работы Алана и в некотором смысле была слабее. Он разработал теорию «лямбда-исчислений» и вместе с логиком Стивеном Клини обнаружил, что такая формальную систему можно использовать для перевода всех арифметических формул в единую стандартную форму. Таким образом, доказательство теорем будут представляться в виде преобразований одной строчки символов лямбда-исчисления в другую, при этом согласуясь с определенным набором довольно простых правил. Затем Чёрч представил доказательство, что проблема возможности преобразования одной строки в другую нерешаема в том смысле, что ни одна формула лямбда-исчислений не могла решить подобный вопрос. Обнаружив пример неразрешимой проблемы, Чёрч смог доказать, что изложенный Гильбертом вопрос, стало быть, также неразрешим. Однако далеко не очевидно было то, что «формула лямбда-исчислений» соответствовала понятию «определенного метода». В то время как Чёрч мог предоставить только словесное подтверждение тому, что любой «эффективный» метод вычисления мог быть представлен в виде формулы лямбда-исчисления, устройство Тьюринга казалось понятным и давало ответ на вопросы, оставленные без внимания в теории Чёрча.
Читать дальшеИнтервал:
Закладка: