Анатоль Абрагам - Время вспять, или Физик, физик, где ты был

Тут можно читать онлайн Анатоль Абрагам - Время вспять, или Физик, физик, где ты был - бесплатно полную версию книги (целиком) без сокращений. Жанр: Биографии и Мемуары, издательство Наука. Физматлит, год 1991. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Анатоль Абрагам - Время вспять, или Физик, физик, где ты был краткое содержание

Время вспять, или Физик, физик, где ты был - описание и краткое содержание, автор Анатоль Абрагам, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Автобиография Анатолия Абрагама — французского ученого-физика, внесшего немалый вклад в развитие физики, в особенности послевоенной, в области исследований по ядерному магнетизму. А. Абрагам был научным руководителем физических исследований в Комиссариате атомной энергии, вел курс ядерного магнетизма в Колледж де Франс; награжден медалью Лоренца и первым удостоен премии Макса Планка. Автор пишет остро, яркими красками, без желания кого-нибудь обидеть, однако называя вещи своими именами.

Книга читается с большим интересом и предназначена широкому кругу физиков.

Время вспять, или Физик, физик, где ты был - читать онлайн бесплатно полную версию (весь текст целиком)

Время вспять, или Физик, физик, где ты был - читать книгу онлайн бесплатно, автор Анатоль Абрагам
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Ничего из этих мечтаний не вышло по одной простой причине: Чемберлен и коллеги, которые разделяли его мнение, ошибались. Из поляризованных мишеней вышло несколько результатов интересных, но отнюдь не фундаментальных, подобных тем, что были получены на пузырьковой камере. Сегодня эти мишени мало кого интересуют, кроме некоторых энтузиастов, которые еще ведут борьбу в арьергарде и публикуют странные, труднообъяснимые результаты. Во всяком случае, как я объяснил в главе «Ускорители и резонансы», общий интерес передвинулся от любых неподвижных мишеней, поляризованных или нет, на коллайдеры. В заключение скажу, что я создал для рынка прекрасное изделие, на которое, вопреки ожиданиям, оказался малый спрос.

Во всяком случае все это скобяное и водопроводное дело, связанное с поляризованными мишенями для высоких энергий, мне смертельно надоело даже до того, как выяснилось падение спроса на них. Для моей любимой дочки — динамической поляризации в твердых телах — я имел в виду других женихов, но об этом позже.

Что касается неуловимой Нобелевской, я любил рассказывать товарищам следующую историю. Мать часто у меня спрашивала: «Почему все получают Нобелевскую, а у тебя ее нет?» На что я отвечал: «Мама, я не Жан Поль Сартр. Когда я отказываюсь от Нобелевской, я это делаю так, чтобы никто об этом не слышал». Это, конечно, дважды выдумка: во-первых, тот, кто прочел написанное в этой книге о маме, поймет, что подобный вопрос от нее немыслим; во-вторых, отказ Сартра от Нобелевской премии, окруженный неслыханной рекламой, произошел через два года после кончины мамы.

Интересно заметить, что в 1933 году, когда Дирак был награжден Нобелевской премией, он хотел от нее отказаться, потому что ненавидел рекламу. Резерфорд уговорил его этого не делать, уверив, что отказ сделает еще большую рекламу. Сартра подобные соображения не смущали.

*Ядра без отдачи

Есть область физики, в которой лично я почти ничего не сделал, но которая меня очень заинтересовала, как только она появилась — испускание и поглощение излучения атомными ядрами без отдачи, или, как это названо по имени физика, открывшего это явление, — эффект Мёссбауэра. Вот в чем заключается его принцип. Атомное ядро А может перейти из возбужденного состояния | е > в основное состояние | g >, испуская гамма-квант с энергией Е. Ядро В, находящееся в основном состоянии | g >, может поглотить этот квант и перейти в возбужденное состояние | е >. Это — явление резонансного поглощения, широко известное в оптике. Но в случае ядерного излучения появляется затруднение. Во время эмиссии, чтобы выполнялся закон сохранения количества движения, на отдачу ядра А уходит энергия R за счет кванта гамма-луча, который уносит лишь энергию E′ = (E — R). Аналогичное рассуждение показывает, что для возбуждения ядра В потребуется энергия E″ = (E + R). Получается расхождение в 2R между энергией луча и той, которая требуется для возбуждения ядра В. Таким образом, резонансное поглощение может произойти только в том случае, если уровни достаточно широки и энергия гамма-квантов достаточно «размазана», чтобы покрыть расхождение 2R. В оптическом резонансе так оно и есть, но не в ядерном, где уровни энергии гораздо ýже.

Например, для ядра 57Fe его подробно изученный переход с энергией 14,4 кэВ имеет естественную ширину Д ≈ 4,6 10 -9эВ, в то время как энергия отдачи R к 2 10 -3эВ, т. е. на шесть порядков величины больше. Все это было известно до Мёссбауэра, и физики-ядерщики уже давно старались искусственно увеличить ширину перехода, сообщая ядрам кинетическую энергию порядка 2R. Это делалось увеличением температуры или источника, или поглотителя, или их обоих. Британский физик Филип Мун (Philip Moon) пытался даже передать ядрам источника кинетическую энергию 2R, помещая источник на окружности быстро вращающегося колеса, как будто метая гамма-частицу пращой.

В конце пятидесятых годов молодой немецкий физик Рудольф Мёссбауэр поставил опыт, в котором он понизил температуру источника (или поглотителя, не помню которого из них) радиоактивного изотопа 191Ir, вместо того чтобы ее повысить, как делали все, и к своему удивлению наблюдал, что поглощение вместо того, чтобы уменьшиться, как ожидалось, увеличилось. Его главная заслуга заключается в том, что он не только обнаружил, но и объяснил это замечательное явление.

На самом деле объяснение было известно и даже давно опубликовано, но не было замечено из-за необыкновенной слепоты всех тех, кто до сих пор занимался этим делом. Все рассуждения велись так, как будто радиоактивные атомы находятся в газе без взаимодействий. В твердом же теле, если энергия отдачи невелика по сравнению с энергией колебаний атомов в образце (что соответствует так называемой частоте Дебая), отдачу испытывает не атом, а весь образец, унося при этом энергию R′, которая пренебрежимо мала. Это верно и для поглотителя. Понижение температуры в эксперименте Мёссбауэра уменьшало вероятность испускания или поглощения фононов одновременно с отдачей ядра, что могло бы размазать необыкновенно узкое поглощение или испускание ядерного излучения.

Замечательно, что в 1939 году, за двадцать лет до открытия Мёссбауэра, Уиллис Лэмб (Willis Lamb) опубликовал полную теорию этого эффекта, правда для нейтронов, а не для гамма-квантов, но принцип там тот же. Что еще любопытней, это то, что Мун, тот, который метал гамма-кванты пращой, советовался с Пайерлсом в связи с этой проблемой и что тот рекомендовал ему почитать статью Лэмба. Что касается самого Лэмба, когда я однажды сказал ему в шутку: «Проморгали вы еще одну Нобелевскую» (первую он получил за несколько лет до того за открытие так называемого «лэмбовского сдвига», которое привело к возрождению квантовой электродинамики), он отозвался на эту дружескую шутку с горечью; очевидно, был не прочь получить вторую.

Два американских физика повторили эксперимент Мёссбауэра, подтвердили его результаты и опубликовали их в «Physical Review Letters», что, наконец, привлекло внимание всех к этому открытию, в том числе и мое. Замечательно, что вместо того, чтобы проделать опыт на каком-нибудь другом ядре, тем более, что на многих других эффект гораздо нагляднее, чем на 191Ir, они повторили опыт на том же ядре. Они просто не поверили результатам Мессбауэра и хотели показать их ошибочность.

Невероятная тонкость мёссбауэровских линий, как они теперь называются, привела к совершенно новому методу развертки. Хорошо известно, что из-за так называемого допплер-эффекта частота Ω источника, приближающегося к поглотителю со скоростью v, покажется поглотителю смещенной на Ω ( v/с ), где с — скорость света. Естественная ширина мёссбауэровской линии, скажем в 57Fe, 2Д и 10 -9эВ, и ее относительное значение, X = (2Δ/Ω), где Ω = 14,4 кэВ — энергия перехода, равно X ≈ 7 10 -13! Из этого следует, что изменение относительной скорости источника и поглотителя, необходимое, чтобы пройти через линию, равно ν = сХ = 3 10 107 10 -13≈ 0,02 см с -1 . На самом деле несовершенство решетки, спин-спиновые взаимодействия внутри образца и конечная толщина источника и поглотителя несколько расширяют линию: значение ее относительной ширины в 57Fe будет ближе к 2 10 -12, чем к 7 • 10 -13. Я привожу все эти подробности потому, что они потребуются немного позже.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Анатоль Абрагам читать все книги автора по порядку

Анатоль Абрагам - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Время вспять, или Физик, физик, где ты был отзывы


Отзывы читателей о книге Время вспять, или Физик, физик, где ты был, автор: Анатоль Абрагам. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x