Вальтер Дорнбергер - Фау-2. Сверхоружие Третьего рейха. 1930–1945

Тут можно читать онлайн Вальтер Дорнбергер - Фау-2. Сверхоружие Третьего рейха. 1930–1945 - бесплатно ознакомительный отрывок. Жанр: Биографии и Мемуары, издательство Литагент «Центрполиграф»a8b439f2-3900-11e0-8c7e-ec5afce481d9, год 2004. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Фау-2. Сверхоружие Третьего рейха. 1930–1945
  • Автор:
  • Жанр:
  • Издательство:
    Литагент «Центрполиграф»a8b439f2-3900-11e0-8c7e-ec5afce481d9
  • Год:
    2004
  • Город:
    Москва
  • ISBN:
    5-9524-1444-3
  • Рейтинг:
    3.58/5. Голосов: 121
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Вальтер Дорнбергер - Фау-2. Сверхоружие Третьего рейха. 1930–1945 краткое содержание

Фау-2. Сверхоружие Третьего рейха. 1930–1945 - описание и краткое содержание, автор Вальтер Дорнбергер, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Генерал Вальтер Дорнбергер, руководивший немецкой экспериментальной программой по созданию ракет дальнего радиуса действия, раскрывает тайны секретных научных поисков, результаты которых могли спасти Гитлера от поражения. Если бы Германия успела пустить в ход это новое оружие на полгода раньше, освобождение Европы могло стать невозможным.

Фау-2. Сверхоружие Третьего рейха. 1930–1945 - читать онлайн бесплатно ознакомительный отрывок

Фау-2. Сверхоружие Третьего рейха. 1930–1945 - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Вальтер Дорнбергер
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Команда, работавшая на аэродинамической трубе, как и остальные коллективы в Пенемюнде, была подобрана под определенного человека из числа ученых, который и руководил ею. Я рассчитывал, что он будет нести полную ответственность за этот участок. Он должен был управлять им и в административном плане, и, советуясь со своими коллегами, в научном. Так, путем коллективной работы всех, задействованных в данной области, мы достигали нужных результатов – а руководитель правильно влиял на своих сотрудников и направлял их. Начальники отделов, которые просто ставили свои имена под проделанной работой, долго на этом месте не засиживались.

Я прошел вместе с доктором Херманном по звуконепроницаемому коридору, по одну сторону которого размещались насосы, большая вакуумная камера и отдел измерений, а по другую – конструкторский отдел и административный, и очутился в зале основных испытаний. Здесь меня встретили доктор Курцвег, руководивший исследованиями, главный инженер Гесснер, конструктор аэродинамической трубы, балансиров и моделей, и инженер Рамм, отвечавший за всю измерительную технику.

Доктор Херманн хотел познакомить меня с характеристиками стабильности новой модели образца «А-9», то есть «А-4» с крыльями. Она в 4,4 раза превышала скорость звука или, иными словами, достигала скорости 5600 километров в час.

В сопровождении доктора Херманна я миновал первый сектор отдела измерений, пока нас не остановили толстые двойные стеклянные панели, из-за которых открывался вид на дюзы Лаваля и измерительную камеру.

Стеклянные панели с нашей стороны были раздвинуты. Воздушный поток, вылетающий из дюз Лаваля, имел размеры в поперечнике 40 на 40 сантиметров и в этом помещении был сходен с тем, который обтекал тело ракеты в свободном полете. Но только здесь, в этом пространстве, можно было снимать показания, столь важные для нашей работы. Они снимались с подвешенной модели, которая вращалась вокруг оси, проведенной через центр тяжести, – маленькой модели, точной копии «А-4», если не считать, что у нее были два очень тонких, как лезвие, оттянутых назад крыла. Модель покачивалась от малейшего прикосновения. Доктор Херманн закрыл внутреннюю стеклянную панель, которая превратилась в боковую стенку, прикрывавшую дюзы, затем внешнюю, полностью изолировав таким образом измерительную камеру. Сегодня мы намеревались провести измерения колебаний, прикинуть, в какой мере на них влияет форма крыльев и можно ли добиться стабильности полета на столь высокой сверхзвуковой скорости – то есть будет ли конструкция держаться носом по воздушному потоку, сохраняя направление полета, затухнут ли колебания после нескольких циклов, что докажет способность конструкции противостоять силам аэродинамики.

Наша измерительная аппаратура и дюзы Лава– ля были сконструированы в тот первый, суматошный и хлопотливый год после создания аэродинамической трубы. В то время мы конструировали трехкомпонентный балансир, с помощью которого могли получать важные данные по коэффициентам лобового сопротивления, подъема и бокового сноса. К концу 1940 года у нас был набор дюз, которые давали скорости от 1,2 до 4,4 числа Маха. Наша работа значительно облегчалась тем, что смена дюз занимала всего десять – пятнадцать минут.

Поскольку точности трехкомпонентного балансира было недостаточно для полноты данных, мы создали устройство, чтобы получать информацию о колебаниях моделей, обладавших свободой вибрации. Оценка их, полученная с помощью осцилограмм, позволила нам определить центр давления, что имело решающее значение для стабилизации.

Кроме того, мы создали и встроили в модель устройство, определявшее ее крутящий момент и уровень стабильности в полете.

И модели почти законченных ракет, как «А-4» и «А-9», и зенитная ракета с помощью нашей измерительной аппаратуры испытывались на самых разных скоростях и углах атаки. Модели шириной 4–5 сантиметров и длиной 25–40 сантиметров подвешивались на продольной оси, и изменения давления воздуха мгновенно считывались со ста десяти точек на корпусе ракеты, на крыльях и хвостовых стабилизаторах этой маленькой модели. Этот метод измерений постоянно совершенствовался, и теперь модель исследовалась самым тщательным образом, на всех возможных числах Маха и углах атаки. Этой работой две недели были заняты две смены по 35 человек в каждой. Они-то и давали конструкторам основные принципы, которые те и воплощали в чертежах.

Формы и эффективность работы стабилизаторов определялись путем постоянных измерений. Поскольку выхлоп ракетных газов на большой высоте расширялся, измерения его конуса давали возможность представить размеры стабилизаторов. Исследования влияния ракетной струи «А-4» на стабильность полета и лобовое сопротивление установили, что на скорости меньше звуковой коэффициент лобового сопротивления возрастает на 70 процентов, а центр тяжести смещается назад на длину половины калибра, то есть на один радиус ракеты. С другой стороны, на сверхзвуковой скорости коэффициент лобового сопротивления уменьшался на целых 30 процентов.

Для проведения всех этих исследований необходимо было создавать специальную измерительную аппаратуру.

И теперь доктор Херманн начал объяснять, что нам было бы желательно провести испытания на стабильность.

– Одно из основных требований к конструкции ракеты заключается в том, что она должна соблюдать достаточную, но не чрезмерную стабильность полета на всем протяжении дистанции, которую она покрывает на определенной скорости и при определенном угле атаки. Чем неизменнее стабильность, тем больший момент силы надо прикладывать, а это означает наличие более крупных стабилизаторов и более мощных сервомеханизмов.

Я согласился с его словами:

– Совершенно правильно, доктор. Законы ракетного движения не обойти. Максимальная скорость полета конечно же напрямую зависит от скорости истечения газовой струи и соотношения между массой ракеты на старте и оставшейся. Таким образом, нам желательно, чтобы вес пустой ракеты был как можно меньше. Так что вес сервомеханизмов необходимо предельно уменьшать.

– Поэтому я и думаю, что мне стоит заняться, – продолжил доктор Херманн, – аэродинамической формой ракеты, которая позволит вести ее с минимально возможной площадью рулей и самыми маленькими сервомеханизмами. Для дистанционно управляемой противовоздушной ракеты это вопрос жизни и смерти. И тут важность коэффициента лобового сопротивления отступает на второй план. Главное в том, что расположение центра тяжести будет как можно дольше оставаться неизменным при всех углах атаки и изменениях скорости на всей дистанции полета – от нуля до скорости звука и до сверхзвуковой. Как вы знаете, после тщательных исследований в нашей трубе мы создали эти условия для противовоздушной ракеты «вассерфаль», определив оптимальную форму крыльев и место крепления хвостовых стабилизаторов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Вальтер Дорнбергер читать все книги автора по порядку

Вальтер Дорнбергер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Фау-2. Сверхоружие Третьего рейха. 1930–1945 отзывы


Отзывы читателей о книге Фау-2. Сверхоружие Третьего рейха. 1930–1945, автор: Вальтер Дорнбергер. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x