Владимир Сыромятников - 100 рассказов о стыковке
- Название:100 рассказов о стыковке
- Автор:
- Жанр:
- Издательство:Логос
- Год:2003
- Город:Москва
- ISBN:5-94010-226-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Сыромятников - 100 рассказов о стыковке краткое содержание
Книга рассказывает о жизни и деятельности ее автора в космонавтике, о многих событиях, с которыми он, его товарищи и коллеги оказались связанными.
В. С. Сыромятников — известный в мире конструктор механизмов и инженерных систем для космических аппаратов. Начал работать в КБ С. П. Королева, основоположника практической космонавтики, за полтора года до запуска первого спутника. Принимал активное участие во многих отечественных и международных проектах. Личный опыт и взаимодействие с главными героями описываемых событий, а также профессиональное знакомство с опубликованными и неопубликованными материалами дали ему возможность на документальной основе и в то же время нестандартно и эмоционально рассказать о развитии отечественной космонавтики и американской астронавтики с первых практических шагов до последнего времени.
Часть 1 охватывает два первых десятилетия освоения космоса, от середины 50–х до 1975 года.
Книга иллюстрирована фотографиями из коллекции автора и других частных коллекций.
Для широких кругов читателей.
100 рассказов о стыковке - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Дополнительно специалист, защитивший диссертацию, как летчик–истребитель времен войны, лично сбивший вражеский самолет, или солдат, гранатой подбивший «свой» танк, самоутверждался этим личным достижением на фоне общих успехов всей кампании.
Для меня, выросшего в вузовской среде, стремление к науке если уж не было впитано с молоком матери, то вдохновлялось повседневным примером отца.
Еще до окончания аспирантуры в ИМАШе, где пришлось заниматься трением в космическом вакууме, в связи со стыковкой я погрузился в теорию движения свободных твердых тел.
Развитие ракетной, и особенно космической, техники дало мощнейший толчок развитию теоретической механики. Термех начинается с изучения движения материальной точки, этот раздел древнейшей науки лег в основу теории, с помощью которой рассчитывается движение центра масс ракеты. У нас эта научно–инженерная дисциплина называется баллистикой. С началом космической эры наши баллистики из ОКБ-1 перешли в бесконечный, как сам космос, мир небесной механики. Для управления ракетой и космическим аппаратом необходимо применение более сложного раздела термеха — теории движения твердого тела. Для решения новых практических задач эта область классической механики потребовала более детальной теоретической разработки. Ученые и инженеры фактически впервые столкнулись с действительно свободным твердым телом только в космическом пространстве. При разработке системы управления космическими аппаратами, их ориентацией и маневрированием на орбите не обойтись без теории движения твердого тела в трехмерном пространстве, без нее здесь, можно сказать, делать нечего. Наши управленцы, а вслед за ними ученые и инженеры из НИИ-88 — нашей альма–матер, из НИИ AT под руководством Н. А. Пилюгина — главного управленца–ракетчика, из НИИ-4 — наших военных союзников, из НИИ-1 и Института прикладной математики (ИПМ) АН СССР под руководством М. В. Келдыша, известного как главный теоретик космонавтики, а также многие другие организации, целые институты и отдельные ученые очень много сделали как для решения практических задач, так и для развития общей теории расчетов. Постепенно в РКТ и в стране в целом сложилась школа выдающихся ракетно–космических механиков, со многими из которых мне пришлось позднее работать.
В огромном управленческом отделе Б. В. Раушенбаха, переведенном в ОКБ-1 из НИИ-1 в начале 1960 года, также было много сильных механиков. Я уже упоминал моих коллег В. Бранца и Е. Токаря, а И. Шмыглевский и Б. Скотников внесли большой вклад в разработку теории и практики орбитального сближения. Позднее Бранец и Шмыглевский детально разработали теорию так называемых кватернионов — четырехстепенных матриц преобразования трех угловых координат твердого тела из одной системы координат в другую. Казалось бы, эта чисто математическая избыточность давала лишь возможность при вычислениях обходить подводные камни — так называемые особые точки. Когда несколько лет спустя на борту космических аппаратов появился компьютер, теория стала научным и математическим фундаментом построения и математического обеспечения навигационных задач, решаемых системами управления космических кораблей «Союз–Т» и «Союз–ТМ», их более поздних модификаций.
Приступив к созданию стыковочного механизма, я соприкоснулся с проблемами движения и взаимодействия двух твердых тел, с чего началось мое проникновение в теоретическую сферу. В последующие годы подобные задачи мне приходилось решать применительно к робототехнике и другим комплексным инженерным проблемам, которые относятся и к механике, и к математике — двум фундаментальным научным дисциплинам, взаимно дополняющим друг друга. Помню, как в Алма–Ате, где в начале 80–х проходил Всемирный конгресс по теоретической механике, были расставлены указатели: «На конгресс математиков». Мы пытались протестовать. Нам же резонно возражали: какие вы механики, настоящие механики, механизаторы сельского хозяйства, съедутся только через неделю.
Еще одни узы, на этот раз — брачные, связали меня с теоретической механикой. Получилось так, что моя жена Светлана, как и я окончившая МВТУ и успевшая целый год проработать у «самого» Пилюгина, попала в Лестех и в течение 30 лет преподавала там термех. А начиналось это так. После рождения нашего сына Антона мы жили рядом с институтом, снимая небольшую комнату у дальнего знакомого со звучной фамилией Матюкевич. Когда Антону исполнился год, мы стали рассматривать варианты дальнейшей научной карьеры молодой мамы. В конце августа 1961 года я встретил на улице своего старинного соседа и приятеля Григория Шубина, работавшего тогда заместителем декана. Он сказал, что кафедре термеха как раз срочно требуется ассистент. На мои сомнения о готовности молодой женщины быстро переключиться от пеленок к теоретическим задачам замдекана обещал дать целый месяц на переподготовку. Через неделю, прорешав несколько десятков задач по статике, мы втолкнули перепуганную Светлану в аудиторию, заполненную ее одногодками, студентами–вечерниками. После этого, по меньшей мере в течение года, когда засыпал Антон, нам пришлось провести не один вечер над задачами по статике, кинематике и, конечно, динамике. Повторение — мать ученья. Во время сессий я иногда заходил на кафедру и для ускорения участвовал в приеме экзаменов у студентов, в общем, стал почти членом кафедры. Помню, как на 40–летие жены, когда собрались все ее коллеги, я даже произнес тост за «молодое твердое тело», чем привел в восторг таких же молодых и непосредственных, но уже опытных преподавателей и ученых–механиков.
Заведующий кафедрой А. Г. Пилютик, бывший работник НИИ-88, настойчиво добивался того, чтобы Светлана занималась научной работой и готовилась к защите диссертации. Такова была общая политика в высшей школе, весьма заинтересованной в повышении уровня своих преподавателей. Между прочим, в 1959 году в Лестехе образовали дополнительный «нелесной» факультет, который стал готовить специалистов в области РКТ для такого могучего соседа, каким к этому времени оказался Королев. Мне еще предстоит рассказать об этом подробнее. Для настоящей науки у Светланы не хватало двух качеств: упорства и честолюбия. Много лет спустя я утешал ее: наш сын Антон — это твоя кандидатская диссертация, а дочь Катерина -докторская. Не продвинувшись в науке, Светлана тем не менее стала хорошим преподавателем — темпераментным, заинтересованным и справедливым. В общем студенты, ее любили.
И все?таки главным, что связало меня с задачами теоретической механики, оказалась работа над анализом, синтезом и испытаниями различных механизмов, от сравнительно простых приводов и рулевых машин до целых механических систем. Когда мы приступили к проектированию стыковочного механизма, задача движения и взаимодействия двух твердых тел стала моей первой полномасштабной теоретической разработкой. Для космической стыковки требовалось создать многостепенную амортизационную систему, которая должна гасить энергию, амортизировать столкновение двух многотонных космических аппаратов, двух тяжелых свободных тел. Без математической модели, без системы дифференциальных уравнений здесь не обойтись.
Читать дальшеИнтервал:
Закладка: