Валерий Августинович - Битва за скорость. Великая война авиамоторов
- Название:Битва за скорость. Великая война авиамоторов
- Автор:
- Жанр:
- Издательство:М. : Яуза : Эксмо, 2010. — 448 с.: ил.
- Год:2010
- ISBN:978-5-699-43214-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Валерий Августинович - Битва за скорость. Великая война авиамоторов краткое содержание
Борьба за господство в воздухе — это прежде всего ВОЙНА МОТОРОВ. Опыт Второй Мировой показал, что именно превосходство в скорости является решающим фактором в воздушном бою, а отставание СССР в моторостроении стало главной «ахиллесовой пятой» наших ВВС в Великой Отечественной войне. Вся история авиации есть ожесточенная БИТВА ЗА СКОРОСТЬ, а значит — за мощность авиадвигателей, по праву считающихся вершиной технологии и доказательством научно-технической состоятельности государства.
Эта книга — первое серьезное исследование великой войны моторов, продолжавшейся весь XX век и определившей развитие авиапромышленности, — от первых поршневых двигателей до новейших газотурбинных, от неуклюжих «этажерок», летавших со скоростью мопеда, до гиперзвуковых стратосферных суперджетов последнего поколения. Будучи признанным авторитетом в области проектирования авиационных двигателей с более чем 40-летним стажем, автор лично участвовал в этой битве за скорость, а его книга не только в высшей степени компетентна, но еще и на редкость увлекательна, читаясь как захватывающий технотриллер.
Битва за скорость. Великая война авиамоторов - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
А вот в США в середине 1960-х гг. перешли от проектирования двигателей по принципу «что получится», классическим примером которого является проектирование двигателя JT3D («Пратт-Уитни») для «Боинга 707», к концептуальному, целевому подходу. Для этого было открыто щедрое финансирование научно-технического задела по федеральным программам на государственные, бюджетные деньги. И здесь сразу США пошли в отрыв, конечно, с крупными «синяками» и «шишками», но — вперед. Особенно это ярко проявилось в проектировании двигателей на фирме «Пратт-Уитни». Вначале произошел переход скачком на двигатели с высокой (5–8) степенью двухконтурности для дозвуковых самолетов большой дальности, первым из которых был военно-транспортный С-5 «Galaxy» (двигатель TF-39-GE), совершивший первый полет уже в 1968 г. США пошли в отрыв, а в СССР авиадвигателестроение стало «тормозить», не сумев воспользоваться уже имеющимся заделом. Причиной этого в первую очередь было отсутствие прорывных проектов самолетов и снижение инновационности самой авиамоторной науки. Как мы увидим далее, переломный 1970-й год застал нашу отраслевую науку врасплох.
При проектировании двигателя с большой двухконтурностью JT9D-PW для 350-тонного (вот это размах!) пассажирского самолета В-747 в основу был заложен принцип минимизации количества опор роторов. И здесь мы должны задать вопрос: а сколько вообще роторов должно быть в турбореактивном двигателе? Один? Два? Три? Четыре? Принцип здесь простой: из школьной физики известно, что мощность — это произведение силы на скорость. В компрессоре или турбине сила, действующая в окружном направлении на лопатки, пропорциональна углу поворота потока между лопаток, а скорость — это окружная скорость вращающихся с диском лопаток.
Угол поворота ограничен геометрией (на 180°, к примеру, поток разворачивать просто бессмысленно), а окружная скорость — сверхзвуковой скоростью на концах лопаток (волновые потери сильно снижают эффективность преобразования скорости в давление). Таким образом, для уменьшения количества ступеней компрессора и турбины стараются иметь максимально возможную окружную скорость. Если двигатель двухконтурный, то вентилятор и компрессор высокого давления имеют разные диаметры из-за разного расхода воздуха через них. Значит, при одинаковой окружной скорости эти нагнетатели (и вентилятор, и компрессор) будут иметь разные обороты, и чем больше степень двухконтурности, тем больше эта разница. То есть в двухконтурных двигателях минимальное количество роторов, а следовательно, и валов, равно двум.
Исключением является французский двухконтурный одновальный двигатель военного назначения М-53. Здесь пошли на снижение эффективности компрессора высокого давления ради уменьшения количества трудноохлаждаемых «горячих» опор-подшипников — двигатель применяется на сверхзвуковом самолете, да и степень двухконтурности у него невысокая, соответственно невелика и разница диаметров вентилятора и компрессора.
Кроме того, со сжатием воздуха в каждой последующей ступени повышается его температура, а следовательно, увеличивается скорость звука. Поэтому мы можем допустить увеличение окружной скорости в каждой последующей ступени ротора компрессора без боязни увеличения волновых потерь. То есть теоретически каждую следующую ступень компрессора желательно вращать с большей окружной скоростью — уровень волновых потерь это допускает. Иначе, сколько ступеней компрессора — столько должно быть роторов с точки зрения минимизации числа ступеней. Но… при этом кратно увеличивается количество подшипниковых опор, нормальную работу которых при больших окружных скоростях и высоких температурах обеспечивать трудно. Таким образом, один-два ротора для одноконтурного и два-три ротора двухконтурного двигателя — это устоявшаяся практика. При этом в случае длинных валов их часто делают разрезными, каждый на двух опорах. Поэтому даже при двух роторах количество опор может быть не четыре, а больше — например, семь (по две на каждый компрессор, три — на две турбины, где одна из опор — общая, межвальная).
Так вот, при проектировании JT9D отказались от разрезных валов, приняв решение: два ротора — четыре подшипниковых узла. Все бы хорошо, но вскоре оказалось, что «паразитные», «лишние» опоры в разрезных валах через свои силовые связи подобно обручам увеличивали жесткость корпусов двигателя. Как только их убрали, корпус компрессора стало «корежить», превращая его из круглого в овальный. А из-за этого пришлось увеличивать радиальные зазоры между лопатками компрессора и корпусом и катастрофически терять кпд. Корпус компрессора на двигателе JT9D пришлось усиливать с помощью продольной балки-«ухвата», ставшей с тех пор атрибутом двигателей с большой степенью двухконтурности. В общем, классическая ошибка конструктора, обусловленная, как уже отмечалось, всегдашней нехваткой времени. Все просчитать невозможно, и многие решения принимаются интуитивно.
Ниже в таблице без комментариев представлены три наилучших компрессора конца 1950-х гг., воплощающих в себе разные приоритеты (школы) проектирования: минимальное количество ступеней (а следовательно, и массы, и стоимости), максимальную степень сжатия, оптимальное сочетание того и другого. Чем выше степень сжатия в двигателе, тем он экономичнее. Выбирайте, что вам нравится. Каждый вариант имеет свои достоинства и недостатки. Для сравнения в последней строке таблицы представлен достигнутый на сегодня (XXI век) уровень проектирования компрессоров. ЕЗЕ — это европейский газогенератор, «сердце» перспективных двигателей следующего поколения, проектируемых на выполнение «трех Е»: эффективность, экология и энергосбережение. В этом проекте реализованы все последние достижения науки и техники в области авиационного двигателестроения. Следует отметить, что немецкие аэродинамики и конструкторы сохранили свои ведущие позиции в проектировании компрессоров и сегодня.

Двигатели Р11-300 и J-79-GE были самыми массовыми в истории реактивной авиации и не в последнюю очередь благодаря конструкции своих компрессоров. Р11-300 было произведено в разных странах около 20 тыс. штук, a J-79-GE, тоже включая лицензионное производство (вплоть до 1993 г. в Израиле), — около 17 тыс. штук.
Таким образом, в мире сложилось две школы проектирования компрессоров турбореактивных двигателей: двухвальные малоступенчатые и одновальные многоступенчатые. К первой школе принадлежали «Пратт-Уитни» в США и ОКБ-300 в СССР. Ко второй школе — соответственно, «Дженерал Электрик» в США, ОКБ-36 (Добрынин), ОКБ-165 (Люлька), ОКБ-19 (Соловьев) в СССР. Далее оказалось, что при повышении температуры газа перед турбиной и связанным с этим переходом к двухконтурной схеме двигателя в выигрыше оказалась последняя школа. Ее разработки компрессоров, по сути, не претерпели изменений при постановке на своем валу впереди компрессора низкого давления (вентилятора и «бустера» — подпорных ступеней). А вот сторонникам первой школы пришлось заново разрабатывать многоступенчатый компрессор… или переходить на трехвальную схему. Но и в последнем случае компрессор нужно было разрабатывать заново: трансмиссия (вал вентилятора) не проходил через втулочное сечение малого диаметра компрессора. Так вторая школа получила конкурентное преимущество во времени.
Читать дальшеИнтервал:
Закладка: