Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра
- Название:Пространства, времена, симметрии. Воспоминания и мысли геометра
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра краткое содержание
Книга, название которой подсказано книгой Вейля - это воспоминания и мысли геометра и математика Бориса Абрамовича Розенфельда, который интересовался вопросами истории науки и философии, побывал во многих странах и встречался со многими людьми.
Книга состоит из 18 глав, первые 15 из которых являются воспоминаниями, в последних 3 главах изложены мысли геометра, историка и философа.
Пространства, времена, симметрии. Воспоминания и мысли геометра - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Аполлоний доказал, что если вершины эллипса или гиперболы - точки А и B, касательные к сечениям в этих точках - прямые AC и BD, E - произвольная точка сечения, прямая CD - касательная к сечению в точке Е, а F и G - фокусы, то углы CFD и CGD - прямые для всех точек Е, а угол CEF равен углу GED.
В силу последнего равенства, если из одного фокуса эллипса выходят лучи света, то, отразившись от эллипса, они соберутся в другом его фокусе, и если в этом фокусе будет находится горючий материал, он загорится. Этим объясняется введенный Иоганнесом Кеплером (1571-1630) термин "фокус", происходящий от латинского слова focus - "очаг". В силу того же равенства, лучи, выходящие из фокуса гиперболы, отражаются от нее таким образом, что продолжения отраженных лучей пройдут через второй фокус гиперболы. Сам Аполлоний о свойствах световых лучей, выходящих из фокусов эллипса и гиперболы, не упоминал. Аполлоний доказал утверждения равносильные тому, что фокальные радиусы-векторы FE и GE точек Е сечения с абсциссами х в случае эллипса равны a+ex и a- ex, а в случае гиперболы равны ex+a и ex-a, где е - эксцентриситет эллипса, равный 1-p/a и эксцентриситет гиперболы, равный 1+p/a. Отсюда следует, что фокальные радиусы-векторы FE и GE точек Е эллипса и гиперболы равны произведениям е на расстояния от точек Е до прямых х = a/e и х =-a/e. Эти прямые в настоящее время называются директрисами эллипса и гиперболы.
Аполлоний не упоминал директрис, но указывал, что сумма фокальных радиусов-векторов точек эллипса и разность фокальных радиусов- векторов точек гиперболы постоянны и равны 2а.
Аполлоний не упоминал фокуса параболы и его свойств, в частности того свойства, которое использовал Архимед при обороне Сиракуз. По- видимому, Архимед, погибший при взятии Сиракуз римлянями, открыл это свойство фокуса параболы незадолго до своей гибели, и оно не было известно Аполлонию.
В V книги "Конических сечений"Аполлоний рассматривал проведение из любой точки плоскости нормалей к коническим сечениям, т.е. прямых перпендикулярных касательным в их точках касания. Аполлоний доказал, что отрезки этих нормалей являются минимальными или максимальными прямыми, проведенными из данных точек к коническим сечениям. Задача о проведении таких линий является частным случаем задачи об условном экстремуме, т.е. об определении максимума или минимума функции f(x,y) при условии, что переменные х, y связаны условием F(x, y) = 0.
Решение этой задачи в общем виде разработал Жозеф Луи Лагранж (1736 -1813), который свел ее к нахождению экстремума функции U(x, y) = f(x,y) + lF(x,y).
Вычисляя частные производные Ux и Uy для функции f(x,y) =(х -х0)2 + (y -y0)2
и для уравнения F(x,y) = 0 конического сечения, приравнивая Ux Uy' нулю и исключая из полученных равенств l, мы найдем уравнение той самой вспомогательной гиперболы, которую определил Аполлоний при проведении нормалей к коническому сечению из точки М с координатами хо и уо. Если это сечение пересекается с вспомогательной гиперболой в точках N и P, то искомыми нормалями являются прямые MN и MP.
Несомненно, что Лагранж разработал свой метод, изучая решение Аполлония, изложенное в V книге "Конических сечений", которая появилась в латинском переводе Галлея в 1710 г.
В том случае, когда точки N и P сливаются, т.е. вспомогательная гипербола касается конического сечения, отрезок MN называется радиусом кривизны конического сечения в точке N, а точка М называется центром кривизны сечения в точке N. В настоящее время геометрическое место центров кривизны кривой называется эволютой этой кривой.
Аполлоний сначала находит центр кривизны конических сечений в их вершинах и доказывает, что радиусы кривизны сечений в их вершинах равны половинам прямых сторон сечений, соответствующих осям, проходящим через эти вершины. Далее Аполлоний приводит пропорции равносильные уравнениям эволют параболы, эллипса и гиперболы. Эволюта параболы -полукубическая парабола, состоящая из двух вогнутых кривых, соединенных в точке возврата. Эволюта эллипса - астроида -замкнутая кривая, состоящая из четырех вогнутых кривых, соединенных попарно в точках возврата. Эволюта гиперболы - псевдоастроида, состоящая из двух ветвей, каждая из которых образована двумя вогнутыми кривыми, соединенными в точке возврата. Все эти кривые - алгебраические, первая - 3-го порядка, вторая и третья -6-го порядка. Точки возврата этих кривых - центры кривизны параболы, эллипса и гиперболы в их вершинах. Аполлоний не рассматривал строения этих кривых.
Равносильность пропорций Аполлония и уравнений эволют конических сечений была доказана Т.Л.Хизсом в 1896 г., однако его доказательства были изложены столь кратко, что остались почти не замеченными в ХХ веке, Аполлоний не указывает каким образом он пришел к этим пропорциям. Профессор Киевского университета М.Е.Ващенко - Захарченко (1825 -1912) в своей "Истории геометрии", опубликованной в 1883 г., высказал предположение, что Аполлоний владел элементами дифференциального исчисления, но в своих работах формулировал результаты, полученные с помощью этого исчисления, в терминах античной математики. Ващенко - Захарченко не рассматривал пропорций Аполлония, которые изучал Хизс, но так как эволюты конических сечений являются огибающими нормалей этих кривых, получить их уравнения без помощи дифференциального исчисления не представляется возможным.
В VI книге Аполлоний доказал, что все параболы подобны между собой, и нашел условия подобия эллипсов и гипербол. Из этих условий следует, что всякие два эллипса и всякие две гиперболы можно перевести друг в друга аффинным преобразованием. Из определения Аполлония конических сечений следует, что всякие два конические сечения можно перевести одно в другое проективным преобразованием.
Аполлоний определял диаметры конических сечений как геометрические места середин параллельных хорд этих сечений, поэтому эти сечения переходят в себя при косом отражении от их диаметров в направлении параллельных хорд. Аполлоний не рассматривал преобразований конических сечений, являющихся произведениями косых отражений от двух диаметров, эти произведения являются аффинными преобразованиями, сохраняющими площади фигур и называемыми в настоящее время параболическими, эллиптическими и гиперболическими поворотами. Многие теоремы Аполлония могут быть легко доказаны при помощи этих поворотов, например, известная теорема из VII книги о том, что параллелограммы, построенные на сопряженных диаметрах эллипса или гиперболы равновелики прямоугольнику, построенному на осях этих сечений.
Выше я упоминал о других математических сочинениях Аполлония, в частности, о "Плоских геометрических местах", где рассматриваются инверсии относительно окружностей и другие преобразования, переводящие "плоские геометрические места ", т.е. прямые линии и окружности, в такие же геометрические места, и о трактате "Касания", где инверсии относительно окружностей применялись для решение геометрических задач.
Читать дальшеИнтервал:
Закладка: