Александр Шаров - Человек, открывший взрыв Вселенной. Жизнь и труд Эдвина Хаббла
- Название:Человек, открывший взрыв Вселенной. Жизнь и труд Эдвина Хаббла
- Автор:
- Жанр:
- Издательство:Наука
- Год:1989
- Город:Москва
- ISBN:5-02-014076-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Шаров - Человек, открывший взрыв Вселенной. Жизнь и труд Эдвина Хаббла краткое содержание
Описание жизни и деятельности великого ученого нашего столетия Эдвина-Пауэла Хаббла (1889—1953), автора замечательных открытий, определивших лицо современной астрономии. Его исследования утвердили концепцию островной Вселенной, состоящей из звездных систем-галактик, подобных Галактике, в которой мы живем. Главным достижением Хаббла явилось открытие закона красного смещения линий в спектрах далеких галактик, свидетельствующего о расширении Вселенной. Рассказывается также об исследованиях, продолживших дело Хаббла: о теории горячей Вселенной, о физике процессов в расширяющейся Вселенной, открытии реликтового излучения, о замыслах новых наблюдений для уточнения картины строения и эволюции Вселенной.
При написании биографии ученого использовался ряд материалов, никогда ранее не публиковавшихся.
Человек, открывший взрыв Вселенной. Жизнь и труд Эдвина Хаббла - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
До Хаббла ни один астроном не пытался открывать цефеиды в туманности Андромеды. Без пользы пролежала у Шепли собранная им коллекция ее снимков. Лишь в сентябре 1924 г., ничего не зная об успехе Хаббла, Лундмарк на заседании Немецкого астрономического общества сказал, что в туманности Андромеды следует искать цефеиды, которые позволят надежно определить ее расстояние.
В астрономии непросто найти объекты, сыгравшие более важную роль, чем цефеиды. Еще в 1908 г. сотрудница Гарвардской обсерватории мисс Генриетта Ливитт установила, что у переменных звезд в Малом Магеллановом Облаке периоды изменения блеска связаны с их блеском, видимыми звездными величинами. Звезды находились в сущности на одном расстоянии от нас, и исследовательнице стало ясно, что «их периоды, по-видимому, связаны с их реальной излучающей способностью». Своим поведением звезды напоминали переменные, известные в шаровых скоплениях. О том, что это цефеиды, догадался знаменитый датский астроном Эйнар Герцшпрунг. Он же впервые попытался связать периоды цефеид с их истинной светимостью, абсолютными звездными величинами,— Установить зависимость период — светимость.
В руках астрономов оказался мощный метод определения расстояний. В принципе достаточно найти период изменения блеска цефеиды, что сделать не так уж трудно, и по нему приписать звезде на основе зависимости период — светимость абсолютную величину. Сопоставив далее видимую и абсолютную величины, можно оценить и расстояние цефеиды, а если она входит в состав, скажем, туманности Андромеды, то и расстояние самой туманности.
Девятнадцатого февраля Хаббл впервые поделился своим результатом в письме к Шепли — знатоку переменных звезд. Он писал: «Вам будет интересно услышать, что я обнаружил цефеиду в туманности Андромеды (М 31). В этот сезон я наблюдал туманность так часто, как только позволяла погода, а за последние пять месяцев выловил 9 новых и 2 переменные... Две переменные были найдены в прошлую неделю [вероятно, следовало бы сказать — подтверждены]. Номер один примерно в 16' предшествует ядру и располагается на слабом неравномерном фоне, но как раз в пределах рукавов. По ряду звезд сравнения величины были оценены довольно наспех, но кривая блеска построена по всем имеющимся наблюдениям с 1909 г. до настоящего момента... Я думаю, что амплитуда переменной не может быть ошибочной более чем на 0,3 m, а медианная величина на 0,5 m.
Вложение в письмо — это копия нормальной кривой блеска, которая, сколь бы грубой она ни была, несомненным образом показывает характеристики цефеид... По Вашей зависимости период — светимость период в 31,415 дня соответствует [абсолютной величине] М = —5 m. Медианная фотографическая величина, примерно 18,5 m, нуждается в некоторой поправке за показатель цвета, Сирс, как максимум, предлагает 0,9 m, хотя Ваша кривая период — цвет для Магеллановых Облаков указывает на большую величину. С сирсовским значением медианная величина 17,6 m, а тогда расстояние становится несколько более 300000 парсеков...» (см. рис. 1, с. 52).
Самое главное заключалось в последней фразе отрывка. Цефеида позволяла надежно установить, что туманность Андромеды, к которой звезда, несомненно, принадлежала, удалена от нас почти на миллион световых лет. Отсюда немедленно следовало, что туманность Андромеды находится далеко за пределами нашей звездной системы, что и она, и Галактика и, вероятно, более слабые малые туманности — равноправные острова Вселенной. Представлениям, которыми жил Шепли, пришел конец. Это он понял сразу.— «Я была в его кабинете,— вспоминала видный гарвардский астроном Сесилия Пейн-Гапошкина,— когда пришло хаббловское письмо и он протянул его мне.— «Вот письмо, которое разрушило мою вселенную»,- сказал он».
Двадцать четвертого февраля Шепли ответил Хабблу: «Баше письмо, рассказывающее об урожае из новых и пары переменных звезд в направлении туманности Дндромеды, наиболее любопытно из того, что я читал за долгое время... Вторая, более слабая переменная (цефеида) — в этом отношении чрезвычайно важный объект».
Хаббл обнаружил в спиральных рукавах и другие слабые переменные, но пока изучить их еще не успел. Обо всем этом подробно рассказывалось в годичном отчете обсерватории, но о самом важном — об оценке расстояния туманности Андромеды — не было сделано даже намека. Видно, Адамс, сменивший Хейла на посту директора, решил быть осторожным и пока подождать результатов изучения других звезд.
Наблюдательный сезон 1923—1924 гг. для Хаббла вообще был очень удачным. Он открыл 10 новых звезд и тем самым пополнил список этих объектов в туманности Андромеды сразу же до номера 32. Среди них некоторые были очень интересными. Так, одна новая оказалась крайне медленной и оставляла свой след на пластинках с октября 1921 г. в течение пяти с половиной лет. Никакой другой подобной ей новой в туманности мы не знаем до сих пор. А три были найдены на таких больших расстояниях от центра, где новых еще не встречалось.
Хаббл обладал счастливой способностью одновременно и интенсивно заниматься несколькими темами. В эти годы, не оставляя туманность Андромеды, он исследовал еще две звездные системы — NGG 6822 и туманность Треугольника М 33.
Первую в 1884 г. обнаружил американец Барнард, наблюдая на своем 5-дюймовом рефракторе. Это был слабый, с трудом различимый объект. Правда, на следующий год, при наблюдении с другим инструментом, объект показался Барнарду уже ярче, и он даже счел его переменной туманностью. По фотографиям, снятым в Гейдельберге в 1906—1907 гг., немецкий астроном Макс Вольф описывал объект как группу маленьких туманностей. Лишь в 1922 г. его природа стала яснее. Перрайн в Кордове сфотографировал этот достаточно южный объект на 30-дюймовом рефлекторе. Он очень напоминал Магеллановы Облака в миниатюре и состоял из звезд и нескольких диффузных туманностей. Такой же вид он имел и на негативах 100-дюймового телескопа, полученных Дунканом в июле 1921 г. Необычность объекта подметили и по снимкам 10-дюймовой камеры, и он был включен в программу для подробного исследования на крупных инструментах.
С июня до ноября в 1923 и 1924 гг. Хаббл получил около 40 негативов NGC 6822 и обнаружил там переменные звезды, среди которых, как и в туманности Андромеды, встречались цефеиды.
Несколько позже Хаббл обратил свое внимание еще на один интересный и крупный объект — туманность Треугольника М 33.
История ее исследований началась довольно давно. Двадцать пятого августа 1764 г. знаменитый ловец комет парижский астроном Шарль Мессье открывает новую туманность, которую заносит потом в свой каталог под номером 33. Туманность привлекала многих. С помощью своих огромных для того времени телескопов Вильям Гершель наблюдает ее неоднократно. Ему порой даже кажется, что туманность распадается на отдельные звезды. В середине прошлого века на телескопе с зеркалом в 6 футов (2 метра) — «Парсонстаунском левиафане» — лорд Росс визуально обнаруживает спиральную структуру в виде пяти отдельных рукавов. Неоднократно астрономы измеряют положение туманности и ее деталей относительно звезд, надеясь в будущем определить собственное движение,— ведь тогда ясных представлений о расстоянии подобных объектов еще не было.
Читать дальшеИнтервал:
Закладка: