Александр Шаров - Человек, открывший взрыв Вселенной. Жизнь и труд Эдвина Хаббла
- Название:Человек, открывший взрыв Вселенной. Жизнь и труд Эдвина Хаббла
- Автор:
- Жанр:
- Издательство:Наука
- Год:1989
- Город:Москва
- ISBN:5-02-014076-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Шаров - Человек, открывший взрыв Вселенной. Жизнь и труд Эдвина Хаббла краткое содержание
Описание жизни и деятельности великого ученого нашего столетия Эдвина-Пауэла Хаббла (1889—1953), автора замечательных открытий, определивших лицо современной астрономии. Его исследования утвердили концепцию островной Вселенной, состоящей из звездных систем-галактик, подобных Галактике, в которой мы живем. Главным достижением Хаббла явилось открытие закона красного смещения линий в спектрах далеких галактик, свидетельствующего о расширении Вселенной. Рассказывается также об исследованиях, продолживших дело Хаббла: о теории горячей Вселенной, о физике процессов в расширяющейся Вселенной, открытии реликтового излучения, о замыслах новых наблюдений для уточнения картины строения и эволюции Вселенной.
При написании биографии ученого использовался ряд материалов, никогда ранее не публиковавшихся.
Человек, открывший взрыв Вселенной. Жизнь и труд Эдвина Хаббла - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Основная идея теории Гамова состоит в том, что высокая температура вещества препятствует превращению всего вещества в гелий. В момент 0,1 с после начала расширения температура была около 30 миллиардов Кельвинов. В горячем веществе имеется много фотонов большой энергии. Плотность и энергия фотонов столь велики, что происходит взаимодействие света со светом, приводящее к рождению электронно-позитронных пар. Аннигиляция пар может в свою очередь приводить к рождению фотонов, а также к возникновению пар нейтрино и антинейтрино. В этом «бурлящем котле» находится обычное вещество. При очень высоких температурах не могут существовать сложные атомные ядра. Они были бы моментально разбиты окружающими энергичными частицами. Поэтому тяжелые частицы вещества существуют в виде нейтронов и протонов. Взаимодействия с энергичными частицами «котла» заставляют нейтроны и протоны быстро превращаться друг в друга. Однако, реакции соединения нейтронов с протонами не идут, так как возникающее при этом ядро дейтерия тут же разбивается частицами большой энергии. Так, из-за большой температуры в самом начале обрывается цепочка, ведущая к образованию гелия.
Только когда Вселенная, расширяясь, охлаждается до температуры ниже миллиарда Кельвинов, некоторое количество возникающего дейтерия уже сохраняется и приводит к синтезу гелия. Расчеты показывают, что к этому моменту доля нейтронов в веществе составляет около 15% по массе. Эти нейтроны, соединяясь с таким же количеством протонов, образуют около 30% гелия. Остальные тяжелые -частицы остались в виде протонов — ядер атомов водорода. Ядерные реакции заканчиваются по прошествии первых пяти минут после начала расширения Вселенной.
Так теория предсказывает возникновение 30% гелия и 70% водорода, как основных химических элементов природы.
На гипотезе Гамова анализ разных вариантов начала космологического расширения не закончился. В начале 60-х годов остроумная попытка снова вернуться к холодному варианту была предпринята Я. Б. Зельдовичем. Он предположил, что первоначальное холодное вещество состояло из протонов, электронов и нейтрино. Как показал Я. Б. Зельдович, такая смесь при расширении превращается в чисто водородную плазму. Гелий и другие химические элементы, согласно этой гипотезе, синтезировались позже, когда образовались звезды. Заметим, что данные об обилии гелия в дозвездном веществе были в шестидесятые годы еще очень неопределенными.
Если бы теории ранней Вселенной можно было проверять только по распространенности химических элементов, то выяснить истину было бы сложно. Ведь не так-то просто разобраться сколько элементов, и в частности гелия, синтезировано в звездах, а сколько в ранней Вселенной. По-видимому, еще долго шли бы споры.
Однако, есть другой способ проверки. Теория Гамова предсказывает существование в сегодняшней Вселенной реликтового электромагнитного излучения [3] Это название было дано излучению советским астрофизиком И. С. Шкловским. Другое его название - космическое или фоновое микроволновое излучение.
. Оно должно остаться от эпохи, когда вещество в прошлом было плотным и горячим. В ходе расширения это излучение остыло и сегодня должно иметь температуру 1—30 Кельвинов.
Электромагнитное излучение со столь малой температурой является радиоволнами сантиметрового и миллиметрового диапазона.
Предсказание реликтового излучения в первых работах Г. Гамова, Р. Альфера, Р. Германа казалось должно было обратить на себя внимание астрофизике а те в свою очередь должны заинтересовать радиоастрономов-наблюдателей с тем, чтобы его попытаться обнаружить.
Но ничего подобного не произошло. Историки науки до сих пор гадают, почему долгие годы никто не пытался сознательно искать реликтовое излучение горячей Вселенной. Прежде чем обращаться к этим догадка напомним цепь фактических событий, приведших самому открытию.
В 1960 г. в США была построена антенна для приема отраженных радиосигналов от спутника «Эхо». К 1963 для работы со спутником эта антенна уже была не нужна и два радиоинженера — Р. Вилсон и А. Пензиас лаборатории компании «Белл» решили использовать для радиоастрономических наблюдений. Антенна представляла собой 20-футовый рупорный отражатель. Вместе с новейшим приемным устройством этот радиотелескоп был в то время самым чувствительным инструментом в мире для измерения радиоволн, приходящих из космоса с широких площадок на небе. Он предназначался в первую очередь для измерения радиоизлучения межзвездной среды нашей Галактики. Наблюдения велись на длине волны 7,35 см. Пензиас и Вилсон не собирались искать реликтовое излучение, да и о самой теории горячей Вселенной они тогда ничего не знали.
Для точного измерения радиоизлучения Галактик необходимо было учесть все возможные помехи. Такие помехи вызывает рождение радиоволн в земной атмосфере, радиоизлучает также и поверхность Земли, помехи возникают в антенне, электрических цепях и приемниках.
Все источники помех были тщательно проанализированы и учтены. Тем не менее Пензиас и Вилсон с удивлением отмечали, что куда бы их антенна ни была направлена на небе, она воспринимала какое-то радиоизлучение постоянной интенсивности. Это не могло быт излучением нашей Галактики, ибо в этом случае его интенсивность менялась бы в зависимости от того, смотрели антенна вдоль плоскости Млечного Пути или поперек. Кроме того, ближайшие к нам галактики, похожие на нашу, тоже излучали бы на длине волны 7,35 см. Но такого их излучения обнаружено не было. Оставалось две возможности: либо были какие-то неучтенные помехи, либо излучение приходит откуда-то из космоса. Подозрения пали на возможные помехи в антенне. Однако, всесторонняя проверка показала, что это не так. Значит, излучение приходит из космоса, причем со всех сторон с одинаковой интенсивностью.
Дальше события, приведшие к разгадке проблемы, связаны со случайностями. Во время беседы со своим приятелем Б. Бёрке о совершенно других вопросах Пензиас случайно упомянул о загадочном излучении, принимаемом их антенной. Тот вспомнил, что он слышал о докладе П. Пиблса, работавшего под руководством известного физика Р. Дикке. В этом докладе Пиблс якобы упоминал об остаточном излучении ранней горячей Вселенной, которое сегодня должно иметь температуру около 10 Кельвинов. Пензиас позвонил Дикке и обе группы исследователей встретились. Р. Дикке и его коллегам П. Пиблсу, П. Роллу и Д. Уилкинсону стало ясно, что А. Пензиас и Р. Вилсон обнаружили реликтовое излучение горячей Вселенной. В это время группа Дикке, работавшая в Принстоне, собиралась сама готовить аппаратуру для подобных измерений на длине волны 3 см, но не успела начать наблюдения, А. Пензиас и Р. Вилсон уже сделали свое открытие.
Читать дальшеИнтервал:
Закладка: