Игорь Нарский - Готфрид Лейбниц
- Название:Готфрид Лейбниц
- Автор:
- Жанр:
- Издательство:Мысль
- Год:1972
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Игорь Нарский - Готфрид Лейбниц краткое содержание
В книге дается анализ метода и философской системы Лейбница, мыслителя, предвосхитившего многие философские и научные идеи XIX–XX вв. Автор разбирает основные произведения Лейбница, излагает его учение о бытии, теорию познания, этику.
Книга рассчитана на широкий круг читателей, интересующихся историей философии, а также историей науки.
Готфрид Лейбниц - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Так как истинное предложение или является тождественным или может быть доказано из тождественных [предложений] с помощью определений, то отсюда следует, что реальное определение существования состоит в том, что существует наиболее совершенное из всего, что может существовать, то есть то, что содержит в себе больше сущности. А природа возможности, или сущности, будет состоять в стремлении к существованию. Иначе невозможно было бы найти никакого основания для существования вещей…
[Пометки Лейбница на полях:]
1Определение истины является реальным [определением]. Истинно, что доказуемо из тождественного (ex identico) при помощи определений. Что доказывается из номинальных определений, то гипотетически истинно, а что из реальных, — то абсолютно [истинно]. Определения тех понятий, которые воспринимаются нами непосредственно, могут быть только реальными. Так, когда я говорю о существовании, истинны бытие, протяжение, теплота, ибо тому самому, что мы таким образом воспринимаем смутно, соответствует и нечто отчетливое. Реальные определения могут быть проверены aposteriori, то есть опытным путем. Что все существующее возможно, это должно доказываться из определения существования.
2Если бы существование было чем-то иным, а не тем, к чему стремится сущность, то тогда оно имело бы некоторую сущность или же добавляло бы к вещам нечто новое, и об этом опять можно было бы спросить, существует ли эта сущность и почему именно эта, нежели другая.
Об универсальном синтезе и анализе, или об искусстве изобретения и суждения [21] Фрагмент статьи «De Synthesi et Analysi universali seu Arte inveniendi et judicandi» (14, Bd. 7, S. 297–298).
[…] Из всего этого становится также ясным, каково будет различие между синтезом и анализом. Синтез имеет место тогда, когда, исходя из принципов и прослеживая порядок истин, мы обнаруживаем некоторые прогрессии и как бы таблицы или даже иногда устанавливаем общие формулы, по которым затем могли бы отыскиваться данные (oblata). Анализ же основания данной проблемы возвращает к принципам так, словно уже нами или кем-либо другим не было ничего открыто. Более важен синтез, ибо его осуществление имеет непреходящее значение, тогда как при анализе мы, как правило, занимаемся разрешением частных проблем; но пользование [результатами] уже осуществленного другими [исследователями] синтеза и уже открытыми теоремами требует меньше искусства, чем анализ, позволяющий все выводить через себя, особенно если учесть, что наши собственные открытия или открытия других [лиц] имеют место не так уж часто и не всегда нам под силу совершать их.
Существует два вида анализа: один общеизвестный, через скачок, и им пользуются в алгебре, другой особенный, который я называю редуцирующим (reductrieis) и который значительно более изящен, но мало известен. Анализ в высшей степени необходим для практики, когда мы решаем встающие перед нами проблемы; с другой стороны, тот, кто может способствовать теории, должен упражняться в анализе до тех пор, пока не овладеет аналитическим искусством; впрочем, было бы лучше, если бы он следовал синтезу и затрагивал только те вопросы, к которым его вел бы сам порядок [исследования], ибо тогда он продвигался бы вперед всегда с приятностью и легкостью и никогда не чувствовал бы затруднений или же не обманывался бы успехом и вскоре достиг бы гораздо большего, чем ожидал сам когда-либо вначале. Обыкновенно же плод размышления портят поспешностью, стремясь скачком перейти к более трудным вопросам, но затратив много труда, ничего не достигают. Известно, что [наиболее] совершенен именно тот метод исследования, при котором мы способны предвидеть, к какому результату мы придем. Но заблуждаются те, которые думают, что когда происхождение открытия становится явным, то оно фиксируется аналитически, а когда остается скрытым, — то синтетически.
Я часто замечал, что изобретательские способности у одних бывают в большей степени аналитическими, а у других — комбинаторными. Комбинаторная, или синтетическая, [изобретательность] имеется по преимуществу там, где надо использовать какой-либо предмет или найти ему приложение, например, когда надо придумать, как приладить данную намагниченную иглу к коробке; напротив, по преимуществу аналитическая имеется там, где задан вид изобретения, или же там, где, предполагая [определенную] цель, надо найти средства. Однако редко анализ бывает чистым, ибо в поисках средств мы по большей части наталкиваемся на искусственные приемы, проистекающие от других [людей] или от нас самих, уже изобретенные когда-то случайно или по какой-либо причине и выхватываемые или из нашей памяти, или из общения с другими [людьми], словно из таблицы или свода изобретений, и [мы] их тут же применяем; но ведь это — нечто синтетическое. Впрочем, комбинаторное искусство, в особенности для меня, такая наука (которая также может быть названа вообще оперированием знаками [characteristica sive speciosa], в которой речь идет о формах вещей или о формулах универсума, то есть о качестве вообще, или о сходном и несходном, так как те или другие формулы происходят от взаимокомбинирования самих а, в, с и т. д. (репрезентирующих либо количество, либо что-то другое). И [эта наука] отличается от алгебры, которая исходит из формул, приложимых [только] к количеству, или из равного и неравного. Поэтому алгебра подчиняется комбинаторике и постоянно пользуется правилами, которые, однако, являются более общими и имеют место не только в алгебре, но и в искусстве дешифрирования, в различных видах игр, в самой геометрии, рассуждающей по древнему предписанию линейно, [и] наконец, всюду, где имеются отношения подобия.
Указатель имен
Августин Блаженный 69, 131, 170
Анаксагор 28
Аристотель 10, 11, 39, 55, 70, 99, 111, 119
Арно А. 13, 25, 104, 134, 141, 145, 146, 202, 206, 217
Бейль П. 25, 159
Беркли Д. 143, 148, 149, 161, 164, 170
Бернулли И. 216
Бойль Р. 14, 156, 221
Больцано Б. 224
Боннэ Ш. 217
Босс Б., де 10, 25, 26, 153
Бошкович Р. И. 224
Брентано Ф. 44
Бруно Д. 98, 135
Бурге Л. 99
Бэкон Ф. 17, 43, 161, 183
Вагнер 10
Вариньон П. 49, 58
Вейгель Э. 12, 154, 209
Вижье П. 44
Винер Н. 214
Виткевич С. 224
Вольдер Б., де 25, 26, 145
Вольтер 132, 170
Вольф К. Ф. 217
Вольф X. 138, 223, 224
Вундт В. 158, 224
Галилей Г. 215
Галлер А. 217
Гамильтон У. Р. 88
Гарвей У. 218
Гассенди П. 34, 156
Гегель Г. В. Ф. 35, 36, 71, 108, 151, 166, 170, 184, 190, 203, 205, 208–210, 218, 223–225
Гейлинкс А. 136
Гельмонт И. Б., ван 26
Георг Людвиг (герцог ганноверский) 14, 20
Гербарт И. Ф. 158, 224
Гердер И. Г. 220
Герон 88
Герхардт К. 26
Гете И. В. 217, 224
Гоббс Т. 22, 34, 120, 154, 156, 161, 209—211
Гюйгенс X. 88
Даламбер Ж.-Л. 216
Декарт Р. 12, 22, 28–32, 34, 35, 105, 127, 154, 156, 170, 179–181, 183, 186, 187, 209–211, 216, 220, 222
Демокрит 10, 99, 151 Дидро Д. 220, 224
Читать дальшеИнтервал:
Закладка: