Жозе Фаус - Наука. Величайшие теории: выпуск 3: Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит?
- Название:Наука. Величайшие теории: выпуск 3: Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит?
- Автор:
- Жанр:
- Издательство:Де Агостини
- Год:2015
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Жозе Фаус - Наука. Величайшие теории: выпуск 3: Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит? краткое содержание
В течение многих лет Вернер Гейзенберг считался одним из самых демонических представителей западной науки. И это неудивительно, ведь именно он стоял во главе нацистской ядерной программы, к счастью, безуспешной. И все же сотрудничество ученого с преступным режимом не заслонило его огромный вклад в науку. В 1925 году Гейзенберг обобщил беспорядочное на первый взгляд скопление наблюдений в сфере квантовой физики за предыдущие десятилетия, а через два года вывел свой знаменитый принцип неопределенности. Ученый заявил, что наблюдатель влияет на созерцаемую им реальность. Этот принцип и выводы, из него следующие, заставили недоумевать многих ученых, в том числе и Эйнштейна, который, протестуя, писал: «Мне хотелось бы думать, что Луна существует, даже если я на нее не смотрю».
Наука. Величайшие теории: выпуск 3: Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит? - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Описанная модель имела один важный недостаток. Ранее бета-распад понимался как процесс, в ходе которого ядро (A, Z) преобразовывалось в новое ядро (A, Z + 1) и испускало электрон. Измерения показали, что начальная энергия была больше энергии, полученной новым ядром и свободным электроном, и это противоречит закону сохранения энергии. Паули предположил, что подобное несоответствие обусловлено существованием особой частицы, нейтрино, которая имеет очень малую массу и почти не взаимодействует с материей. Нейтрино впервые был обнаружен в 1950-е, и хотя его масса до сих пор не определена, известно, что она меньше двух миллиардных долей массы протона. Нейтрино почти не взаимодействуют с материей: каждую секунду через наше тело проходит примерно 10 12нейтрино, но мы их совершенно не замечаем. Великое множество этих частиц возникает в результате химических реакций, происходящих внутри Солнца. Сегодня известно, что протоны и нейтроны – это не элементарные частицы. Они состоят из u-кварков и d-кварков (протон p = uud, нейтрон n = udd). Вся материя образована четырьмя частицами – u, d, e, v – и соответствующими античастицами (то есть имеющими противоположный заряд). Существуют еще две группы частиц, подобных частицам первого семейства, но с большей массой. Они проявляются в лабораторных экспериментах и при реакциях с космическими лучами.
Бор по-прежнему настаивал на том, что для описания явлений на уровне элементарных частиц необходима новая теория. Гейзенберг, разделяя эту точку зрения, предположил, что Вселенную можно представить как огромную кристаллическую решетку. Космос – это решетка из крошечных кубических ячеек размером с элементарную частицу. Ячейки представляют собой наименьшую универсальную единицу длины, а на меньших расстояниях современная квантовая теория будет неприменима. Однако эти идеи не вели к каким-либо конкретным результатам, и в 1931 году Гейзенберг написал Бору: «[…] Я отказываюсь рассматривать фундаментальные вопросы, которые для меня слишком сложны». Лишь появление новых результатов, связанных с космическими лучами, заставило Гейзенберга через два года изменить точку зрения.
Британский физик Патрик Блэкетт и итальянец Джузеппе Оккиалини, работавшие в Кембриджском университете, обнаружили, что при улавливании детектором космического луча с очень большой энергией наблюдается поток частиц, по всей видимости, возникающих при столкновении луча с ядрами атомов свинца, которым был покрыт детектор. Вскоре после этого открытия американский ученый Карл Дейвид Андерсон выявил позитрон, существование которого было предсказано уравнением Дирака. При столкновении электрон и позитрон уничтожаются, и рождаются два фотона, которые разлетаются в противоположных направлениях в соответствии с самым знаменитым уравнением физики Е = mc2 .
Верно и обратное: фотон, обладающий достаточно большой энергией, способен породить электрон и позитрон. Согласно закону сохранения импульса, чтобы это произошло, фотон должен столкнуться с ядром атома. Эти открытия вновь пробудили в Гейзенберге интерес к квантовой электродинамике. Он ожидал, что сможет связать свою гипотетическую минимальную единицу длины с длиной волны фотонов, которые присутствуют в потоке частиц, порождаемых космическими лучами. В «дожде частиц» возникают новые частицы, начиная с легчайших – пионов и мюонов. Описание всех этих частиц и античастиц было непростой задачей, ведь следовало учесть все возможные взаимодействия, все возможные процессы и их вероятности. Гейзенберг не мог четко сформулировать квантовую теорию поля (она стала постепенно вырисовываться лишь в 1940-е годы), однако именно он разработал многие основные ее элементы.
Космические лучи – это заряженные частицы, попадающие на Землю из космоса. В большинстве своем это протоны, которые попадают на Землю с поверхности Солнца. До изобретения ускорителей изучить столкновения частиц высоких энергий можно было только с помощью космических лучей. Когда протон, движущийся к Земле с космическими лучами, сталкивается с ядром атома в верхних слоях атмосферы, возникает цепная реакция, в результате которой образуется большое число частиц. Пример подобной реакции представлен на рисунке.

В конце января 1933 года Гитлер был провозглашен рейхсканцлером Германии, то есть главой правительства. Он получил все полномочия, позволявшие управлять страной в обход конституции, и немедленно принял особый закон о правительственных чиновниках, который подразумевал снятие со всех государственных должностей евреев, социалистов, коммунистов и противников режима. В результате последовавших увольнений и отставок университеты потеряли 15 % профессуры, а некоторые научные центры, в частности Гёттингенский университет, практически опустели.
Эйнштейн нашел убежище в США и заявил, что не вернется в Германию, пока в ней будут править нацисты. Он ушел в отставку со всех постов и заявил, что отказывается от членства в Прусской академии наук:
«Первейшая задача всякой академии заключается в поддержке и защите научной жизни страны. Однако члены научного общества Германии, насколько мне известно, стали молчаливыми свидетелями того, как немецких ученых, студентов и преподавателей лишили возможности трудиться и зарабатывать средства к существованию. У меня нет ни малейшего желания принадлежать к научному обществу, которое способно, даже под давлением извне, вести себя подобным образом».
Некоторые ученые вступили в нацистскую партию или открыто симпатизировали ей – например, соавтор матричной механики Паскуаль Йордан, а также два лауреата Нобелевской премии по физике: Филипп фон Ленард, получивший премию в 1905 году за работы о фотоэффекте, и Йоханнес Штарк, удостоенный премии в 1919 году за открытие удвоения лучей спектра в электрическом поле. Штарк вступил в ряды нацистской партии в 1930 году и в течение нескольких лет оказывал большое влияние на научную жизнь страны; Йордан примкнул к нацистам в мае 1933 года.
Большинство ученых, как и многие в Германии, считали, что в условиях экономического и социального кризиса необходима новая политическая сила, поэтому идеи Гитлера они восприняли с надеждой. Люди верили, что перегибы нового режима вскоре будут устранены и ситуация улучшится. Примерно так же считал и Гейзенберг. В частности, он попытался убедить Борна, уволенного из института за то, что его деды были евреями, не покидать Германию. В июне Гейзенберг писал:
Читать дальшеИнтервал:
Закладка: