Хоакин Наварро - Том 37. Женщины-математики. От Гипатии до Эмми Нётер

Тут можно читать онлайн Хоакин Наварро - Том 37. Женщины-математики. От Гипатии до Эмми Нётер - бесплатно полную версию книги (целиком) без сокращений. Жанр: Биографии и Мемуары, издательство «Де Агостини», год 2014. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Хоакин Наварро - Том 37. Женщины-математики. От Гипатии до Эмми Нётер краткое содержание

Том 37. Женщины-математики. От Гипатии до Эмми Нётер - описание и краткое содержание, автор Хоакин Наварро, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Из этой книги читатель узнает о жизни и научных достижениях самых выдающихся женщин-математиков разных эпох. Это Гипатия и Лукреция Пископия, Каролина Гершель и Мэри Сомервилль, Ада Лавлейс и Флоренс Найтингейл, Софья Ковалевская и Эмми Нётер, Грейс Хоппер и Джулия Робинсон. Хотя они жили в разные времена и исследовали разные области математики, всех их объединяла любовь к этой науке, а также стремление сломать сложившиеся в обществе стереотипы. Своим примером они доказали всему миру: женщины обладают такими же интеллектуальными способностями, как и мужчины, и преуспели в математике чуть меньше исключительно по социальным причинам.

Том 37. Женщины-математики. От Гипатии до Эмми Нётер - читать онлайн бесплатно полную версию (весь текст целиком)

Том 37. Женщины-математики. От Гипатии до Эмми Нётер - читать книгу онлайн бесплатно, автор Хоакин Наварро
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Основных алгебраических структур, которые рассматриваются как множества с одной или несколькими операциями, много. Мы ограничимся тем, что рассмотрим структуры, на которых определены две операции, oи •. Этими операциями часто оказываются +и •. Порой требуется так называемый третий закон внешней композиции ( а иногда и больше), но мы рассмотрим только простейшие случаи. Вместо того чтобы постоянно использовать слова «является элементом», заменим их символом .

Группой называется множество элементов А с определенной на нем операцией o, которая удовлетворяет трем следующим условиям:

1) существует нейтральный элемент n такой, что n о а = а о n = а для любого a А;

2) для каждого а А существует обратный элемент а -1такой, что а о а -1= а -1о а = n ;

3) для любых a, b, с А выполняется свойство ассоциативности, согласно которому ( а о Ь ) о с = а о ( Ь о с ).

Группа называется коммутативной, или абелевой (в честь норвежского математика Нильса Хенрика Абеля), если для любых a, b А определенная нами операция обладает коммутативностью, то есть выполняется соотношение а о Ь = b о а .

Если на группе определена операция сложения (+), то элемент, обратный а , обозначается — а и называется противоположным. Нейтральный элемент в этом случае обозначается 0.

Если на группе определена операция умножения (), то элемент, обратный а , обозначается 1/ а . Нейтральный элемент в этом случае обозначается 1.

4) для любых а, Ь, с А справедливо ( а Ь ) с = а ( Ь с ).

Операции о и связаны друг с другом свойством дистрибутивности относительно:

5) а ( Ь о с ) = ( а b ) о ( а с ).

Кольцо — это коммутативная группа, на которой определена еще одна операция обладающая свойством ассоциативности:

Примерами колец являются натуральные числа картинка 68, целые числа , рациональные числа картинка 69, вещественные числа картинка 70и комплексные числа картинка 71(вне зависимости от определенной для них модальной арифметики). Многочлены также образуют кольца.

В мире колец операция ообладает коммутативностью аналогично операции сложения, поэтому она обозначается знаком +. Операция (для простоты будем предполагать, что она также обладает коммутативностью) обозначается знаком ·, подобно умножению.

Подгруппой или подкольцом А будет любое подмножество, которое будет оставаться группой или кольцом, если ограничить операции оили этим подмножеством. Идеал — особое подкольцо: это подкольцо В картинка 72 А такое, что любое произведение b В и любого другого элемента, принадлежащего В или нет, будет принадлежать В . Идеалы можно складывать и перемножать. Результатами сложения и умножения идеалов также будут идеалы. Понятие идеала возникло как обобщение понятия числа. Для двух данных идеалов I и J имеем:

Определить идеал IJ несколько сложнее Это идеал порожденный всеми - фото 73

Определить идеал IJ несколько сложнее. Это идеал, порожденный всеми произведениями ху , где х I, у J . Пересечение всех идеалов, содержащих подобные произведения, называется порожденным идеалом.

Областью целостности называется кольцо А , на котором для операции · не существует так называемых делителей нуля. Иными словами, на этом кольце не существует элементов а и b таких, что аb = = 0.

В этом случае кольцо А является коммутативным и содержит единичный элемент, то есть для операции определен нейтральный элемент, играющий роль единицы:

а 1 = а .

Теперь рассмотрим область целостности А без 0. Обозначим ее через А * = А |(0). Если операция ·определяет на А * коммутативную группу, то А называется полем. Если А * не является коммутативной, то А называется телом. Не стоит пугаться подобных сложностей: если кольцо А конечно, то оно коммутативно согласно знаменитой теореме Веддербёрна. Если кольцо А бесконечно, то наступает раздолье для алгебраистов.

Рассмотрим А-модули — редчайший вид современного алгебраического мира. Чтобы определить левый А-модуль, нам потребуются кольцо с единицей А и коммутативная группа М . Действия с элементами a, b А и элементами М ( m, n М ) определяются следующим, вполне обычным образом:

1. ( ab ) m = а ( Ьm )

2. ( а + b ) n = am + bm

3. а ( m + n ) = am + аn

4. 1 m = m .

Аналогично определяется правый А-модуль; коммутативный модуль (или просто A-модуль) — это модуль, который является правым и левым одновременно. Если А — поле, то A-модуль называется векторным пространством. Если для векторов векторного пространства определена операция умножения, имеем «алгебру». На этом мы остановимся. Хотя приведенные нами определения элементарны, вполне возможно, что читатель не назовет элементарным этот раздел.

Несколько слов об алгебре, идеалах и нётеровых кольцах

Большая часть научной работы Эмми Нётер была посвящена кольцам и идеалам — алгебраическим структурам, над которыми она работала многие годы. Почему же Нётер уделяла им такое внимание?

Многие объекты, с которыми работают математики, представляют собой кольца: так, кольцами являются множество целых чисел и его последовательные расширения — , и . Кольцами также являются многочлены одной переменной с коэффициентами из вышеуказанных колец [X], [X], [X] и [X]. Аналогично кольцами являются многочлены нескольких переменных [X 1, Х 2…., X n], [X 1, Х 2…., X n], [X 1, Х 2…., X n], и [X 1, Х 2…., X n]. А также сходящиеся ряды — короче говоря, много чего еще.

Но что такое идеалы и почему они получили столь романтичное название? Совершим небольшой экскурс в историю математики. Рассмотрим в качестве примера квадратичное целое [√-5] или [i√5], что аналогично. Это множество чисел вида а + Ь √-5, где а и Ь — целые числа. Иными словами,

5 кольцо убедитесь в этом но здесь говоря математическим языком мы - фото 74

[√-5] — кольцо (убедитесь в этом), но здесь, говоря математическим языком, мы вступаем в запретную зону. Мы привыкли к стандартным свойствам делимости и к тому, что разложение числа на простые множители всегда является единственным. К примеру, рассмотрим число 21. Имеем 21 = 3·7 и на этом разложение на множители заканчивается: 21 можно разложить на простые множители единственным способом, и этими множителями будут 3 и 7. Это утверждение следует из основной теоремы арифметики: на множестве разложение любого числа на простые множители является единственным. На множестве [√-5] это утверждение уже не будет выполняться: здесь мы можем разложить 21 на простые множители двумя способами:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Хоакин Наварро читать все книги автора по порядку

Хоакин Наварро - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 37. Женщины-математики. От Гипатии до Эмми Нётер отзывы


Отзывы читателей о книге Том 37. Женщины-математики. От Гипатии до Эмми Нётер, автор: Хоакин Наварро. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x