Хоакин Наварро - Том 37. Женщины-математики. От Гипатии до Эмми Нётер

Тут можно читать онлайн Хоакин Наварро - Том 37. Женщины-математики. От Гипатии до Эмми Нётер - бесплатно полную версию книги (целиком) без сокращений. Жанр: Биографии и Мемуары, издательство «Де Агостини», год 2014. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Хоакин Наварро - Том 37. Женщины-математики. От Гипатии до Эмми Нётер краткое содержание

Том 37. Женщины-математики. От Гипатии до Эмми Нётер - описание и краткое содержание, автор Хоакин Наварро, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Из этой книги читатель узнает о жизни и научных достижениях самых выдающихся женщин-математиков разных эпох. Это Гипатия и Лукреция Пископия, Каролина Гершель и Мэри Сомервилль, Ада Лавлейс и Флоренс Найтингейл, Софья Ковалевская и Эмми Нётер, Грейс Хоппер и Джулия Робинсон. Хотя они жили в разные времена и исследовали разные области математики, всех их объединяла любовь к этой науке, а также стремление сломать сложившиеся в обществе стереотипы. Своим примером они доказали всему миру: женщины обладают такими же интеллектуальными способностями, как и мужчины, и преуспели в математике чуть меньше исключительно по социальным причинам.

Том 37. Женщины-математики. От Гипатии до Эмми Нётер - читать онлайн бесплатно полную версию (весь текст целиком)

Том 37. Женщины-математики. От Гипатии до Эмми Нётер - читать книгу онлайн бесплатно, автор Хоакин Наварро
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В судьбу Джулии вмешался кризис 1929 года, ставший причиной трагедии: отцовские сбережения растаяли, и Ральф Боумен, не в силах пережить потрясение, покончил с собой. Положение семьи пошатнулось, но, благодаря помощи тети, семья осталась на плаву, и Джулия продолжила учебу. На все личные расходы она получала ровно 12 долларов в семестр.

Благодаря тяге к знаниям и трудолюбию, а также финансовой поддержке сестры Констанс, которая к тому времени уже преподавала, Джулия прослушала несколько курсов в Калифорнийском университете в Беркли. Дальнейшая учеба не особенно помогала в поисках работы: работодатели спрашивали Джулию не о математике, а о том, как быстро она печатает на машинке. В Беркли Джулия влюбилась одновременно в красоту высшей математики и в очаровательный голос одного из преподавателей — юного Рафаэля Робинсона(1911–1955) . В университете девушка узнала, что была прекрасным лебедем среди гадких утят. Именно там она впервые почувствовала себя по-настоящему счастливой. Незадолго до того как мир содрогнулся от нападения на Пёрл-Харбор, Джулия и Рафаэль поженились.

Джулия Боумен выходит замуж

Согласно университетским правилам, Джулия не могла преподавать математику на той же кафедре, что и ее муж. К счастью, Ежи Нейман(1894–1981) пригласил ее заняться статистикой в лабораторию секретных военных проектов. Джулию всегда привлекала эта сфера, особенно после того как она познакомилась с впечатляющей бейсбольной статистикой. И все же статистика не была истинной страстью Джулии — ее больше привлекала рискованная жизнь профессионального математика. Впрочем, к новой работе она отнеслась со всей серьезностью. Как-то раз Джулию попросили описать, как проходит ее обычная неделя. Она ответила: «Понедельник: попытаться доказать теорему. Вторник: попытаться доказать теорему. Среда: попытаться доказать теорему. Четверг: попытаться доказать теорему. Пятница: теорема оказалась неверной».

Джулияс мужем Рафаэлем Робинсоном Джулия и Рафаэль хотели завести ребенка и - фото 83

Джулияс мужем Рафаэлем Робинсоном.

Джулия и Рафаэль хотели завести ребенка, и Джулия стала уделять математике меньше времени, готовясь стать матерью. Она забеременела, но, к несчастью, потеряла плод. Возможно, тем самым она спасла себе жизнь: врач обнаружил в митральном клапане Джулии рубцовую ткань и сообщил супругам, что ее слабое сердце не выдержит еще одной беременности. Более того, доктор признался мачехе Джулии, что если ее падчерица доживет до 40 лет, это будет чудом. Молодая пара была вынуждена остаться бездетной. Чтобы справиться с депрессией, Джулия при поддержке Рафаэля с головой ушла в математику.

В 1946 году она получила степень доктора под руководством выдающегося математика Альфреда Тарского(1902–1983) , защитив диссертацию о проблемах разрешимости в арифметике рациональных чисел ( Definability and Decision Problems in Arithmetic ). Джулия столкнулась с подобными проблемами впервые, и, по всей видимости, они произвели на нее неизгладимое впечатление. Именно Тарский первым заговорил с подопечной о диофантовых уравнениях.

За исключением всего двух важных статей, все математические труды Джулии Робинсон касались десятой проблемы Гильберта (о ней мы более подробно поговорим далее) и проблем разрешимости. Первая из этих двух статей ( A Note on Exact Sequential Analysis ) была посвящена аналитико-статистической задаче и написана в период совместной работы с Нейманом. Во второй статье, опубликованной в 1951 году, во время короткого периода работы в корпорации RAND (ведущем американском мозговом центре), рассматривалось решение проблемы равновесия Нэша в теории игр, в то время находившейся на пике популярности, называлась эта работа «Итеративный метод решения игр» ( An Iterative Method of Solving a Game ).

Как видите, Джулия Робинсон и диофантовы уравнения были словно созданы друг для друга.

Диофантово уравнение — это уравнение с одной или несколькими неизвестными с целыми коэффициентами, решения которого принадлежат множеству целых чисел . Эти уравнения названы в честь древнегреческого математика Диофанта Александрийского(ок. 200–214 — ок. 284–298) , который посвятил им целый трактат — «Арифметику». Примером диофантового уравнения является уравнение с тремя неизвестными

х 2+ у 2= z 2.

Как вы знаете, это уравнение выражает теорему Пифагора, и еще с глубокой древности известно, что оно имеет бесконечно много решений. В параметрическом виде решениями этого уравнения являются тройки чисел вида:

х = m 2— n 2,

у = 2 mn ,

z = m 2+ n 2,

где m и n — целые числа. Такие тройки чисел называются пифагоровыми и известны уже много веков. Намного интереснее выглядят тройки ненулевых чисел х, у, z , когда выполняется условие

х n + у n = z n, n > 2.

В этом случае указанное диофантово уравнение не имеет решений. Так формулируется знаменитая теорема Ферма, доказанная в 1995 году. Десятая проблема Гильберта была не столь «простой» и звучала принципиально иначе: в ней требовалось найти алгоритм, позволяющий определить, имеет ли решения произвольное диофантово уравнение. К счастью, сегодня мы знаем, что такого алгоритма не существует. Для решения десятой проблемы Гильберта потребовалось не 300 лет, как на доказательство теоремы Ферма, но целых 70, а также ряд блестящих идей.

В 1961 году, когда Джулии было чуть за 40, прогнозы врачей подтвердились: ей потребовалась операция на сердце. К счастью, кардиохирургия в те годы была уже достаточно развитой, и лечение прошло успешно. Однако сердце Джулии было слишком слабым, и ей нельзя было перенапрягаться. В результате, когда в 1976 году она стала профессором Калифорнийского университета в Беркли, руководству пришлось согласиться с тем, что преподавать Джулия будет всего на четверть ставки. После операции Джулии порекомендовали езду на велосипеде, и она отдалась этому занятию с такой страстью, что стала покупать велосипеды один за другим, стремясь найти самый легкий и управляемый. Ее муж жаловался: «Другие жены покупают пальто или бриллиантовые браслеты, а моя жена покупает велосипеды».

В 1984 году у Джулии Робинсон обнаружили лейкемию. Благодаря лечению болезнь отступила, но ненадолго: исследовательница умерла в 1985 году.

Десятая проблема Гильберта

На математическом конгрессе 1900 года Давид Гильберт, ведущий математик мира, представил список из 23 нерешенных задач. Решение этих задач, по его мнению, означало бы существенное развитие математики. Гильберт предполагал (для тех времен такая точка зрения была вполне логичной), что любая проблема имеет решение, и рано или поздно все 23 его проблемы будут решены. Сегодня нам известно, что Гильберт ошибался: спустя много лет Курт Гёдель доказал, что существуют задачи, парадоксальным образом не имеющие решения. Между прочим, одной из подобных неразрешимых проблем оказалась континуум-гипотеза — первая же проблема в списке Гильберта. Вне зависимости от того, будем мы считать континуум-гипотезу истинной или ложной, в рамках формальной логики мы никогда не придем к какому-либо противоречию.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Хоакин Наварро читать все книги автора по порядку

Хоакин Наварро - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 37. Женщины-математики. От Гипатии до Эмми Нётер отзывы


Отзывы читателей о книге Том 37. Женщины-математики. От Гипатии до Эмми Нётер, автор: Хоакин Наварро. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x