Ниал Фергюсон - Площадь и башня [Cети и власть от масонов до Facebook]
- Название:Площадь и башня [Cети и власть от масонов до Facebook]
- Автор:
- Жанр:
- Издательство:Литагент Corpus
- Год:2017
- ISBN:978-5-17-109384-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ниал Фергюсон - Площадь и башня [Cети и власть от масонов до Facebook] краткое содержание
Площадь и башня [Cети и власть от масонов до Facebook] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Выражение “молниеносно разлететься”, а совсем буквально – “стать вирусным” давно уже воспринимается как избитое клише, излюбленный штамп рекламщиков и маркетологов [166] Berger, Contagious . См. также Sampson, Virality .
. Тем не менее наука, изучающая сети, дает возможность наилучшим образом понять, почему некоторые идеи распространяются чрезвычайно быстро. Идеи – даже как некоторые эмоциональные состояния и болезненные расстройства вроде ожирения – способны передаваться через социальные сети, действительно напоминая в этом смысле вирусы заразных болезней. Однако идеи (или мемы, если воспользоваться неологизмом из лексикона эволюционистов), как правило, все-таки менее заразны, чем вирусы. Биологические и компьютерные вирусы обычно осуществляют “широковещательный поиск” по всей сети, так как их цель – максимально размножиться, перекинувшись на каждого соседа каждого зараженного ими узла. Мы же, напротив, интуитивно избираем тех членов своей сети, которым мы желаем передать идею или от кого мы сами готовы воспринять идею как заслуживающую доверия [167] Хорошую дискуссию на эту тему см. в: Collar, Religious Networks , 13f.
. Ранним вкладом в изучение этой темы стала “модель двухступенчатого потока информации”, предложенная социологами Полом Лазарсфельдом и Элиху Кацем, которые в 1950-х годах заявили, что идеи перетекают от СМИ к широким слоям населения через так называемых лидеров мнения [168] Katz and Lazarsfeld, Personal Influence .
. Другие исследователи, уже в конце ХХ века, пытались измерить скорость, с какой разносятся новости, слухи или новшества. Более поздние исследования показали, что через сеть передаются даже эмоциональные состояния [169] Hill, ‘Emotions as Infectious Diseases’.
. Хотя различить эндогенные и экзогенные сетевые эффекты совсем непросто [170] Dolton, ‘Identifying Social Network Effects’.
, свидетельства, указывающие на заражения такого рода, достаточно очевидны: “Студенты, у которых соседи по комнате прилежно учатся, сами начинают заниматься усерднее. А люди, сидящие за одним столом с обжорами, сами налегают на еду” [171] Christakis and Fowler, Connected , 22.
. Однако, если верить Кристакису и Фаулеру, мы не можем передавать идеи или поведенческие привычки за пределы круга друзей друзей наших друзей (иными словами, не дальше чем на три рукопожатия вперед). Дело в том, что для передачи и восприятия идеи или поведенческой привычки требуется связь более крепкая, чем для пересылки письма (как в случае эксперимента Милгрэма) или для сообщения о том, что там-то имеется такая-то вакансия. Если мы просто знакомы с человеком, это еще не значит, что мы способны повлиять на него так, чтобы он начал прилежнее учиться или переедать. Подражание – поистине самая искренняя форма лести, даже когда оно происходит неосознанно.

Илл. 6. Фундаментальные понятия теории сетей. Каждая точка на графике – это вершина, или узел, каждая линия – грань. Точка, названная центральным узлом, имеет наибольшую центральность по степени и центральность по посредничеству. Вершины, названные кластером, имеют более высокую плотность, или коэффициент местной кластеризации, чем другие участки графика.
Ключевой момент, как и при эпидемии болезней, заключается в том, что скорость и размах рассеивания определяется не только сутью самой передаваемой идеи, но и устройством сети, по которой она передается [172] Kadushin, Understanding Social Networks , 209f.
. В процессе вирусизации важнейшую роль играют узлы, которые служат не только связующими центрами или посредниками, но и “привратниками”, то есть людьми, решающими, передавать или не передавать поступившую информацию дальше, в ту часть сети, которая находится за ними [173] Nahon and Hemsley, Going Viral .
. Решение, которое они принимают, отчасти зависит от их мнения о том, как скажется переданная информация на них самих – положительно или отрицательно. С другой стороны, для того чтобы идея оказалась воспринята, требуется, чтобы ее передал не один источник и даже не два, а больше. Сложная культурная инфекция, в отличие от простого эпидемического заболевания, для начала требует набрать критическую массу первых сторонников, обладающих высокой центральностью по степени (то есть сравнительно большим количеством влиятельных друзей) [174] Centola and Macy, ‘Complex Contagions’.
. По словам Дункана Уоттса, главное при оценке вероятности каскадного эффекта, напоминающего заражение, – “сосредоточиться не на самом стимуле, а на структуре сети, по которой расходится этот стимул” [175] Watts, Six Degrees , 249.
. Это помогает объяснить, почему на каждую идею, которая разлетелась по свету молниеносно, как вирус, приходится множество других идей, которые прозябают в безвестности и выдыхаются только потому, что начали свой путь с неудачного узла, неудачного кластера или из неудачной сети.
Глава 7
Разновидности сетей
Если бы все общественные сети были устроены одинаково, мы жили бы в совершенно ином мире. Например, мир, в котором вершины (узлы) соединялись бы друг с другом произвольным образом – так что количество ребер, приходящихся на одну вершину, распределялось бы по колоколообразной кривой, – обладал бы некоторыми свойствами “тесного мира”, но не был бы похож на наш [176] Случайные сети впервые исследовали знаменитый обилием научных работ и часто цитируемый математик Пал Эрдёш и один из его многочисленных соавторов Альфред Реньи. Случайный граф получается, если разместить на плоскости множество n вершин, а затем произвольным образом соединять их попарно, пока не появится множество ребер m . Каждую вершину можно выбирать более одного раза или же не выбирать вовсе. (Прим. авт.)
. Дело в том, что во многих реально существующих сетях наблюдается принцип распределения Парето: в них имеется больше вершин с очень большим количеством ребер и больше вершин с очень малым количеством ребер, чем бывает в случайных сетях. Это вариант того феномена неравномерного распределения преимуществ, который социолог Роберт К. Мертон назвал “эффектом Матфея” – из-за слов в Притче о талантах из Евангелия от Матфея: “ибо всякому имеющему дастся и приумножится, а у неимеющего отнимется и то, что имеет” [177] Мф 25:28. (Прим. пер.)
. В науке успех порождает успех: тому, у кого уже есть награды, и впредь будет доставаться больше наград. Нечто подобное наблюдается и в “экономике суперзвезд” [178] Rosen, ‘The Economics of Superstars’.
. Точно так же, по мере расширения многих крупных сетей, узлы приобретают новые ребра пропорционально тому количеству, которое у них уже имеется (это их степень, или “пригодность”). Иными словами, наблюдается “предпочтительное присоединение”. Этим открытием мы обязаны физикам Альберту-Ласло Барабаши и Реке Альберт, которые первыми выдвинули предположение о том, что большинство реально существующих сетей, возможно, подчиняются при распределении степенному закону или являются “безмасштабными” [179] Про модели распределения, подчиняющиеся степенному закону, говорят, что у них “утяжеленные хвосты”, поскольку относительная вероятность очень высокой степени и очень низкой степени выше, чем в тех случаях, когда связи образуются случайным образом. В строгом смысле термин “безмасштабность” относится к тому факту, “что относительная частота узлов со степенью d по сравнению с узлами со степенью d´ равняется относительной частоте узлов со степенью kd по сравнению с узлами со степенью kd´ , когда происходит изменение масштаба при помощи произвольного фактора k > 0”. В безмасштабной сети не существует типичного узла, однако “масштаб” различий между узлами представляется везде одинаковым. Иначе говоря, для безмасштабного мира характерна фрактальная геометрическая структура: село – это большая семья, город – большое село, а королевство – большой город. (Прим. авт.)
. По мере развития таких сетей некоторые узлы становятся связующими центрами и приобретают гораздо больше ребер, чем остальные узлы [180] Barabási and Albert, ‘Emergence of Scaling in Random Networks’.
. Примеров подобных сетей очень много – от директоров тысячи крупнейших компаний, по версии Fortune, до цитат в физических журналах и ссылок на веб-страницы [181] Barabási, Linked , 33–34, 66, 68f., 204.
. По словам Барабаши,
Интервал:
Закладка: