Николай Горькавый - Сказка о том, как астрономы и часовщики спасали моряков

Тут можно читать онлайн Николай Горькавый - Сказка о том, как астрономы и часовщики спасали моряков - бесплатно полную версию книги (целиком) без сокращений. Жанр: Публицистика. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Сказка о том, как астрономы и часовщики спасали моряков
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Николай Горькавый - Сказка о том, как астрономы и часовщики спасали моряков краткое содержание

Сказка о том, как астрономы и часовщики спасали моряков - описание и краткое содержание, автор Николай Горькавый, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Сказка о том, как астрономы и часовщики спасали моряков - читать онлайн бесплатно полную версию (весь текст целиком)

Сказка о том, как астрономы и часовщики спасали моряков - читать книгу онлайн бесплатно, автор Николай Горькавый
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Второй способ основан на движении Луны. Наблюдать спутник Земли гораздо удобнее, потому что, в отличие от Юпитера, если небо не затянуто тучами, Луна видна в любой день года. Но это — очень капризный объект с точки зрения динамики. Ньютон, который занимался теорией движения Луны, понял, что использовать наше ночное светило в качестве ориентира для моряков можно только при очень сложных вычислениях на основе очень точных наблюдений Луны в течение десятков лет, а таких наблюдений в начале XVIII века ещё не было.

Третий способ был прост сам по себе. Он заключался в сравнении времени местного полдня со временем на часах, показывающих полдень в точке с известной долготой, например в Гринвичской обсерватории. Однако такой способ требовал, чтобы на корабле были очень точные часы, «хранящие» гринвичское время долгие месяцы: ошибка в одну секунду во времени давала ошибку на четыреста метров в координатах плывущего судна.

— Я не понимаю, как с помощью часов можно измерить долготу, — сказал хмуро Андрей. Галатея согласно закивала головой.

В комнату зашла Дзинтара и позвала всех обедать.

— Где накрыт стол? — поинтересовался Майкл.

— На веранде, — ответила принцесса.

— Отлично! — обрадовался чему-то Майкл и выглянул в окно. Солнце пыталось добраться до зенита.

Когда все уселись за круглый стол, в центре которого торчал длинный нераскрытый зонт, Майкл сказал:

— Сейчас я покажу вам, как с помощью часов можно измерить широту и долготу. Мы это сделаем с помощью зонта, часов и… — Майкл осмотрел стол, — винограда!

Глаза детей немедленно загорелись. А Майкл оторвал виноградинку от фиолетово-дымчатой кисти и положил её на конец тени, которую отбрасывал зонт на белую скатерть. Потом он посмотрел на часы и сказал:

— Пока мы обедаем, Солнце пройдёт высшую точку на своём пути. В этот момент тень будет самой короткой, и мы должны засечь это время. Будем измерять длину тени каждые четыре минуты.

Они принялись обедать, не забывая выкладывать на скатерти длинный ряд виноградин. Кое-где чашкам и тарелкам пришлось потесниться, но все, включая Дзинтару, энергично расчищали путь «астрономическим» ягодам, которые образовали плавную дугу, огибающую зонт.

Майкл прищурил один глаз, потом поколдовал с ниткой, привязанной к основанию зонта, используя её как циркуль, — и указал на одну из виноградин:

— Вот эта ближе всех к зонту.

Она оказалась одиннадцатой с момента начала наблюдений. Поразмыслив, Майкл заключил:

— Солнце достигло максимальной высоты в час и восемнадцать минут.

— И что дальше? — спросила Галатея, доедая жаркуе с картофельным пюре.

— А вот что, — сказал Майкл и взялся за телефон. — Я позвоню своему сыну, Роберту. Он сейчас в Лондоне и, думаю, не откажется нам помочь.

Роберт откликнулся почти сразу:

— Добрый день. Я гуляю с друзьями по Кембриджу.

— А не мог бы ты съездить в Гринвичскую обсерваторию и засечь время самой короткой тени от какой-нибудь заострённой длинной палки, а также измерить угол тени — вернее, отклонение Солнца от вертикали в этот момент. У нас время самой короткой тени было в 13 часов 18 минут.

Галатея едва дождалась конца разговора и нетерпеливо воскликнула:

— Но ведь они опоздали! Время короткой тени уже прошло!

Майкл отрицательно покачал головой:

— Оно прошло на нашей долготе. А на долготе Лондона Солнце ещё не забралось на вершину своей траектории. Давайте измерим угол тени, — сказал Майкл. Он вынул из кармана ключи с брелком и вытянул из брелка рулетку.

— Вначале определяем высоту зонта над поверхностью стола, потом — длину кратчайшей тени. Если длину тени поделить на высоту зонта, то получим тангенс верхнего угла в треугольнике, образованного зонтом и тенью. С помощью калькулятора легко вычислим, что угол отклонения тени — или солнечного луча от вертикали — равен 29,5 градуса.

— Я не знаю, что такое тангенс! — насупилась Галатея.

— Это очень простая штука, сейчас объясню, — сказал Майкл. — Предположим, что длина тени равна длине зонта, значит, их отношение равно единице. Чему равен верхний угол в таком треугольнике?

— Это я знаю, — облегчённо сказала Галатея. — Треугольник стал половиной квадрата, значит, верхний угол равен половине прямого угла, или 45 градусам.

— Верно! — просиял Майкл и быстро написал на листке бумаги слева «45 градусов», а справа единицу.

— А если длина тени стремится к нулю, то и угол равен нулю! — и Майкл добавил два нуля в таблицу — только в самый низ страницы.

— Теперь будем задавать другие значения отношения длин тени и зонта — от нуля до единицы, а потом измерим получившиеся углы. Так мы заполним все строчки в таблице. Например, для отношения длины тени и зонта, равного 0,5, мы можем измерить верхний угол, и он окажется равным 26,6 градуса. Можешь ли ты, Галатея, заполнить такую таблицу сама, если я дам тебе линейку для черчения треугольников и угломер для измерения углов?

— Конечно, могу, — заявила Галатея.

— Прекрасно! — улыбнулся Майкл. — Теперь представь, что какой-то древний математик сделал это впервые, посмотрел в таблицу и сказал: «Отношение горизонтальной и вертикальной сторон в таком прямоугольном треугольнике есть функция верхнего угла. Отныне пусть эта функция называется тангенсом!»

— Вот так просто? — не поверила ушам Галатея. — Составить таблицу примитивных измерений и объявить это тангенсом?

— Да, только надо сделать это первым. А потом надо ввести таблицу во все калькуляторы, чтобы я мог задать калькулятору любую длину тени, а он, сверившись с таблицей тангенсов, сразу выдал бы мне величину верхнего угла в выбранном мной треугольнике.

— Если я возьму и составлю таблицу отношений длины горизонтальной тени не к длине зонта, а к длине наклонной линии в этом треугольнике и буду потом измерять верхний угол, это ведь будет другая функция? — спросила недоумевающая Галатея.

— Конечно! — воскликнул Майкл.

— Это будет функция, которая называется синусом!

Галатея напряжённо впилась взглядом в таблицу.

Дети спорили про синусы и тангенсы, пока не принесли вкуснейшие пирожные и душистый чёрный чай с мятой. Пока то да сё, время пролетело, и позвонил Роберт.

— У нас Солнце достигло максимальной высоты в 13 часов и 22 минуты!

Майкл уточнил:

— По гринвичскому времени, которое отстаёт от нашего на целый час, так как располагается в другом часовом поясе. Итак, гринвичский полдень настал позже нашего на 1 час и 4 минуты. Земля делает оборот в 360 градусов за 24 часа, следовательно, запаздывание Солнца на 4 минуты соответствует смещению долготы на один градус. Значит, между нами и Гринвичским меридианом примерно 16 градусов. Долгота Гринвичского меридиана — ноль, это означает, что наше местоположение соответствует 16 градусам восточной долготы. Роберт, а какой угол отбрасывала ваша тень в этот момент?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Николай Горькавый читать все книги автора по порядку

Николай Горькавый - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Сказка о том, как астрономы и часовщики спасали моряков отзывы


Отзывы читателей о книге Сказка о том, как астрономы и часовщики спасали моряков, автор: Николай Горькавый. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x