Владимир Сливяк - От Хиросимы до Фукусимы

Тут можно читать онлайн Владимир Сливяк - От Хиросимы до Фукусимы - бесплатно полную версию книги (целиком) без сокращений. Жанр: Публицистика, издательство Array Литагент «Эксмо», год 2012. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    От Хиросимы до Фукусимы
  • Автор:
  • Жанр:
  • Издательство:
    Array Литагент «Эксмо»
  • Год:
    2012
  • Город:
    Москва
  • ISBN:
    978-5-699-52137-1
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Владимир Сливяк - От Хиросимы до Фукусимы краткое содержание

От Хиросимы до Фукусимы - описание и краткое содержание, автор Владимир Сливяк, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В марте 2011 года крупнейшее цунами вывело из строя системы охлаждения на АЭС «Фукусима-Дайчи», что привело к четырем большим взрывам. Лишь благодаря счастливому стечению обстоятельств катастрофа привела к гибели всего двух сотрудников станции и переселению примерно 80 000 человек. В этой книге оцениваются причины и последствия этой ядерной аварии и как она могла произойти в наиболее технологически продвинутой стране мира. А также – как выглядит на этом фоне Россия. Действительно ли у нас все настолько безопасно, как об этом говорят власти и атомная промышленность? Возможно ли повторение Чернобыля и Фукусимы в России?

От Хиросимы до Фукусимы - читать онлайн бесплатно полную версию (весь текст целиком)

От Хиросимы до Фукусимы - читать книгу онлайн бесплатно, автор Владимир Сливяк
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Во-первых, размер реакторного здания был уменьшен за счет упрощения схемы аварийного охлаждения активной зоны.

Во-вторых, по сравнению с N4 тепловая мощность реактора была увеличена на 15 % через изменение конструкции парогенераторов, позволяя основным насосам охлаждающего контура работать с более высокой мощностью.

В-третьих, система безопасности реактора EPR уступает KONVOI из-за менее совершенной системы аварийного охлаждения активной зоны.

Несколько других усовершенствований преподаются как повышающие уровень безопасности.

Резервуар для хранения воды для дозаправки(IRWST) располагается в нижней части корпуса реактора. В случае аварии с потерей теплоносителя он способен переключаться на режим безопасного впрыскивания. В этом случае можно избежать создания некоторых причин аварий. Однако вероятность достижения полной безопасности достаточно мала.

Задачей «ловушки»в активной зоне реактора является предупреждение аварии с расплавлением активной зоны. Аналогичная технология предлагается для реализации и на ВВЭР-1200. Однако еще до того, как «ловушка» вступает в действие, по нескольким причинам может произойти сильнейший взрыв, последствием которого будет разрушение части реактора. Кроме того, взрыв может случиться и позже, когда продукты расплавления активной зоны соприкоснутся с водой, предназначенной для охлаждения плавящейся активной зоны. Даже если этого не произойдет, остается неясным, как именно будет проходить охлаждение расплавленной активной зоны, ведь на поверхности продукта плавления может застыть твердый слой, предотвращающий отвод тепла.

Конструкция системы отвода теплавзята из N4. Она не допускает возникновения избыточного давления. Эта система должна оставаться работоспособной на протяжении длительного времени. Информация об авариях, произошедших с данной системой, недоступна.

Система предотвращения водородного взрыва за счет снижения концентрации водорода внутри защитной оболочки.Такие системы функционируют во многих реакторах западного образца с водой под давлением. Вероятно, они эффективны в снижении риска взрыва, но не могут исключить его полностью.

EPR оснащен цифровой инструментально-контрольной системой.Применение на практике данной системы сильно зависит от разработчика, поэтому достаточно сложно контролировать правильный ввод системы в эксплуатацию. Подобная система была установлена на АЭС «Некар-1» типа PWR в 2001 году в Германии; система дала сбой, и на протяжении некоторого времени аварийное отключение реактора оказалось невозможно. Цифровая система была также установлена на PWR АЭС «Сайзвэл» в Великобритании, при вводе АЭС в эксплуатацию, что в апреле 1998 года привело к серьезному снижению эффективности защитной системы реактора.

Защитная система от авианалетов эквивалентна системе германской KONVOI и не достигает нового, более высокого уровня безопасности. Несмотря на изменения, EPR повторяет все проблемы, присущие PWR второго поколения, которые до сих пор так и не решены. Согласно документам регулирующих органов Финляндии, в реакторах EPR в сборных фильтрах засоряются выходные отверстия, хотя патенты французских экспертов утверждают, что это не является значимым фактором при сравнении имеющихся конструкций реакторов. Выходные отверстия были изучены финскими экспертами много лет назад, но и сейчас являются источником проблем для EPR.

В конечном счете, нет гарантии того, что уровень безопасности EPR по сравнению с реакторами N4 и KONVOI существенно выше; в частности, снижение вероятности расплавления активной зоны в 10 раз – не доказано. Более того, есть серьезные сомнения в эффективности «ловушки».

Модульный реактор с шаровой засыпкой (PBMR)

PBMR является высокотемпературным газоохлаждаемым реактором (HTGR). В некоторых странах до конца 80-х годов продолжалось строительство HTGR. Однако функционировали только опытные образцы АЭС и были остановлены самое большее после 12 лет эксплуатации: «Пич Баттом 1» и «Форт Сэнт Враин», США, в 1974 и 1989 годах; «Винфрит», Великобритания, в 1976 году; «Гам-Вентроп», Германия, в 1988 году [50].

В отличие от реакторов на воде, в конструкции PBMR используется гелий под давлением, нагреваемый в активной зоне реактора для приведения в действие ряда турбин, прикрепленных к генератору. Гелий также используется для охлаждения. Температура гелия на выходе из активной зоны достигает около 900 °C с давлением около 69 бар. Вторичный гелиевый контур охлаждается водой [51].

Проектировщики говорят, что на PBMR невозможны инциденты, которые могут привести к повреждению топливных элементов и выбросу радиации. Данные утверждения основываются на теплоустойчивости и целостности графитовых тепловыделяющих сборок, размером с теннисный мяч, которых в реакторе находится около 400 тыс. Каждый тепловыделяющий элемент имеет графитовое ядро, содержащее в себе частицы обогащенного урана (до 10 %), заключенное в капсулы из твердого углерода.

Однако существуют аварийные сценарии, в которых воздух может проникнуть в первичный гелиевый контур, за этим последует тяжелая авария с графитовым возгоранием, что приведет к катастрофическому радиоактивному выбросу. Горение графита является одним из наиболее опасных сценариев, которые могут произойти с реактором PBMR [52].

По словам потенциального оператора PBMR, компании Eskom, реактор всегда остается «целым и невредимым, безопасным». Имеется в виду, что, даже если персоналу придется покинуть станцию, с реактором ничего не случится. Утверждается, что в любом случае температура топлива не поднимется выше максимального значения (1600 °C), тогда как повреждение может произойти при температуре не ниже 2000 °C [53].

Однако нет никаких гарантий, что температура не поднимется выше 1600 °C. Она зависит от быстроты аварийной остановки реактора, а также от функционирования системы охлаждения (что может быть затруднено разрывом труб и утечками). Более того, серьезное повреждение или расплавление топлива возможно при температуре менее 2000 °C. Радиоактивные выбросы также могут происходить при температуре ниже 2000 °C.

Другие конструкции реакторов поколения 3

Перечень разработок третьего поколения, отмеченных Всемирной ядерной ассоциацией (WNO 2004b) и Международным агентством по атомной энергии (МАГАТЭ 2004).

Реактор с водой под давлением

Существуют следующие типы больших реакторов: APWR (разработчики – компании Mitsubishi и Westinghouse), APWR+ (японская компания Mitsubishi), EPR (французская компания Framatome ANP), АР-1000 (американская компания Westinghouse), KSNP+ и APR-1400 (корейские компании) и CNP-1000 (Китайская национальная ядерная корпорация). В России разработан ВВЭР-1200.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владимир Сливяк читать все книги автора по порядку

Владимир Сливяк - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




От Хиросимы до Фукусимы отзывы


Отзывы читателей о книге От Хиросимы до Фукусимы, автор: Владимир Сливяк. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x