Александр Стрекалов - Слово об Учителе. Биографический очерк
- Название:Слово об Учителе. Биографический очерк
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2021
- ISBN:978-5-532-11301-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Стрекалов - Слово об Учителе. Биографический очерк краткое содержание
Слово об Учителе. Биографический очерк - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В 1900 году математикам-лежебокам подкинули новую большую забаву: были опубликованы знаменитые проблемы Гильберта . А их 23-и, напомним, и одна хлеще другой, одна другой головоломнее, забавнее и коварнее. С какой жадностью и страстью набросились на них учёные – ну прямо как дети малые на игрушки! – и принялись головы ломать, мозги кипятить и плавить, спорить, доказывать, горячиться… Ломают, спорят и кипятятся и до сих пор: 5 проблем ещё вроде как стоят не решённые (2 проблемы вообще никак не решены, а 3 решены не до конца, в частном виде). Десятки, если не сотни тысяч кандидатских и докторских диссертаций по всему мiру было защищено на гильбертовом интеллектуальном наследии, сотни везунчиков и счастливчиков (о попросту прохиндеев в мантиях и ловкачей) стали известными на весь мiр светилами, лауреатами и академиками – обладателями славы и почестей, и миллионов денег! – портретами которых, по-видимому, теперь забиты многочисленные учебники и монографии, увешаны коридоры средних и высших школ.
Спустя 100 лет после оглашения известного списка немца Давида Гильберта уже американский математик Стивен Смейл (лауреат престижной премии Филдса за 1966 год) подсуетился и предложил новый список из 18-ти современных нерешённых проблем . А следом и свой же похожий список в виде 7-ми задач тысячелетия (куда вошла и одна из нерешённых ещё проблем Гильберта – гипотеза Римана ) обнародовал Математический институт Клэя .
-–
(*) Для любителей и ценителей математики, которые, слава Богу, не перевелись ещё, и по счастью не переведутся, заметим вскользь, что первые три проблемы из списка Смейла ( Гипотеза Римана, Гипотеза Пуанкаре(вроде как уже решена) и Равенство классов Р и NР) входят также и в список задач тысячелетия , за решение каждой из которых, между прочим, математикам обещан солидный приз – 1 млн. американских долларов. Так что дерзайте, юноши, напрягайте мозги, показывайте мiру, что и вы все чего-то стоите…
––
Ну а потом … потом замаячила-запалила души учёных известная “задача трёх тел” , четырёх, пяти… десяти (шутка!). И так далее – до без-конечности. Задач – их много на свете. И каждая решённая задача-проблема порождала и порождает десятки новых. Этот ПРОЦЕСС невозможно остановить. Он – без-конечен, как в целом и сама наша ЖИЗНЬ, частью которой является царица наук математика. Что, собственно, и доказала в первой половине ХХ века теорема Гёделя о неполноте :что математический мiр, как и мiр физический, пределов и границ не имеет. По этой причине полностью формализовать и подогнать под общий фундамент-базу всю современную математику невозможно, чего так страстно добивался любитель логики и порядка Д.Гильберт, чему посвятил жизнь.
А вот есть ли от него, от означенного ПРОЦЕССА, польза? – это уже другой вопрос. Нравственный – в первую очередь. Учёный-математик должен был, есть и будет сам решать: правильно ли это – сидеть на шее у государства и заниматься Бог знает чем? Задачами совершенно абстрактными и сомнительными в плане практической выгоды, в плане нужности человечеству. Теми же проблемами Гильберта, например, или Смейла; или без-конечно-мерными искривлёнными и скрученными в жгут пространствами и причудливыми объектами в них, которые и представить-то невозможно: не хватает ума и воображения, – в реальной жизни которых попросту нет, а только в фантазиях и головах учёных…
3
Вопрос о том, какие математические задачи заслуживают того, чтобы их пытаться решить ( не частным порядком, особо отметим это, не в свободное от основной работы время, а за счёт общества, за счёт простых людей), и зачем они вообще ставятся и решаются? – весьма непрост и непразден. Во всех смыслах! А можно спросить и шире: что есть такое вообще – современная математика, и к какой категории её отнести?! Является ли она простой забавой, игрой разгорячённого воображения – “перечислением следствий из произвольных аксиом”, то есть самодостаточной и самоценной реальностью, вещью в себе, как и музыка?! – или же всё-таки ветвью естествознания и теоретической физики?! И законы математики, как ни крути, составляют своего рода «идейный скелет» мiроздания, дают научному мiру необходимый разговорный язык («книга природы написана на языке математики» – Г.Галилей ) – единственный и уникальный.
Над этим начали думать и говорить ещё со времён “неевклидовой ереси”, то есть со времён открытия и обоснования неевклидовой геометрии как полноценной альтернативы евклидовой ; но глубже, напористее и жарче всего, безусловно, – со времён Гильберта и Пуанкаре, то есть с конца ХIХ – начала ХХ века. С тех пор учёные спорщики разделились как бы на два непримиримых и враждебных друг другу лагеря – на аксиомофилов (сторонников Фреге, Рассела, Уайтхеда и Гильберта) и естествоиспытателей (сторонников Декарта, Кронекера, Пуанкаре). Одни яростно дуют в свою дуду, доказывая правильность своей позиции: чистоты, самодостаточности и независимости математики от других дисциплин, – другие – в свою: утверждают, что математика, прежде всего, это служанка-помощница естествознания; следствие, а не первопричина. И конца и края этим интеллектуальным околонаучным баталиям и склокам пока что не видно…
4
Сколь остро, злободневно и яростно до сих пор нешуточное противостояние между аксиомофилами и естествоиспытателями , породившее глобальный кризис современной точной науки, 4-ый по счёту (об этом читайте мою работу «Современная математика. Исток. Проблемы. Перспективы» ), свидетельствует такой, например, красноречивый факт. В конце ХХ века Международный математический союз выпустил невероятно ценную, на скромный авторский взгляд, книгу «Математика, её границы и перспективы» . Так вот, в этой книге содиректор Боннского математического института Ю.И.Манин (бывший профессор мехмата МГУ, член-корреспондент АН СССР и ученик гениального И.Р.Шафаревича) дал свои новые определения математики, математического образования и новую оценку стоящих перед математической дисциплиной задач – с высоты всех накопленных знаний, прошлых жарких дискуссий и споров.
«Математика, – согласно Манину, – это отрасль лингвистики или филологии, занимающаяся преобразованием конечных цепочек символов некоторого конечного алфавита в другие такие цепочки при помощи конечного числа “грамматических” правил»…
Читать дальшеИнтервал:
Закладка: