Жорес Алферов - Власть без мозгов. Отделение науки от государства
- Название:Власть без мозгов. Отделение науки от государства
- Автор:
- Жанр:
- Издательство:Алгоритм
- Год:2012
- ISBN:978-5-4320-0055-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Жорес Алферов - Власть без мозгов. Отделение науки от государства краткое содержание
Жорес Иванович Алферов – лауреат Нобелевской премии по физике, академик РАН, известен также своей широкой общественной деятельностью. Будучи депутатом от КПРФ Госдумы нескольких созывов, он неизменно отстаивал интересы российской науки и хорошо знал, в каком положении она находится.
По его мнению, десять процентов населения России, захватив в свои руки все национальные богатства, мало заботятся о том, чтобы наша страна вышла на передовые позиции в мире. В результате состояние науки в России близко к катастрофическому, тысячи и тысячи талантливых ученых вынуждены покидать Родину, а те, кто остается, работают в тяжелейших условиях. На словах власть заботится о научном потенциале государства, но на деле положение такое, что наукой могут заниматься сегодня только несгибаемые оптимисты.
Обо всем этом Ж.И. Алферов пишет в своей книге, делает прогнозы на будущее и предлагает конкретные меры по выводу российской науки из глубокого кризиса.
Власть без мозгов. Отделение науки от государства - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Ещё в 1959 году произошло значимое событие: два американских инженера, Нойс и Килби, построили первую интегральную схему на кремнии. Это было революционное изменение в полупроводниковой технологии, поскольку именно этим шагом мы перешли от схемных решений, когда отдельные элементы были дискретными и соединялись друг с другом, к использованию полупроводникового кристалла. На интегральных схемах построена вся микроэлектроника. Сегодня электроника — самая динамичная отрасль экономики в мире и для большинства стран является стратегической отраслью.
Что дают вложения в электронику? Один доллар вложений дает сто долларов в конечном продукте. Уровень рентабельности электронной промышленности — сорок процентов. Среднемировой срок окупаемости вложений в электронику — два-три года. Темпы роста в три раза выше темпов ростов внутреннего валового продукта. Одно рабочее место в электронике дает четыре в других отраслях. Один килограмм изделий микроэлектроники по стоимости эквивалентен стоимости ста десяти тонн нефти. Технологии развиваются сегодня бурно. Количество транзисторов в одной интегральной схеме достигло в 2000 году сорока трёх миллионов, а в 2014 году оно составит 4,3 миллиарда. Скорость каналов передачи информации от десяти гигабит в секунду в 2000 году за этот срок возрастёт в тысячу раз, до 10 000 гигабит.
Сегодня шестьдесят пять процентов валового национального продукта Соединенных Штатов Америки определяется промышленностью, связанной с электроникой, основанной на использовании электронных компонентов. В США и Канаде производство электронной техники на душу населения — 1 260 долларов, тогда как в России всего 14 долларов. Объем финансирования научноисследовательских и опытно-конструкторских работ, при сравнении Соединенных Штатов Америки и России, отличается в десятки, если не сотни раз. Говоря об объемах производства электронных компонентов, нужно отметить, что за последние несколько лет Китай резко пошел вверх, а Россия, в общем, находится на бесконечно низком уровне.
Все развитие кремниевой микроэлектроники было связано прежде всего с прогрессом технологии. Основные активные компоненты — полевой транзистор и биполярный транзистор — физически, так сказать, остались такими же, как были открыты в 1947 году, а вот технология совершила гигантский прогресс. Термин "нанотехнологии" возник так: сегодня масштаб измерений кремниевой микроэлектроники переходит от десятых долей микронов в нанометровый диапазон, 45, 60, 70 нанометров — это то, что сегодня осваивается в опытном производстве, а 13 нанометров — это будущее, и не такое отдаленное. Переход на наноразмеры в гетероструктурах произошел уже давно, а в кремниевой микроэлектронике происходит сегодня. Эти изменения будут иметь существенные физические последствия, могут начать работать квантоворазмерные явления и эффекты.
Несколько слов о втором направлении — гетероструктурах. Здесь основой служит развитие технологии выращивания полупроводниковых гетероструктур, представляющих собой новый класс материалов, в которых мы управляем всеми основными свойствами. Если до эпохи гетероструктур мы имели материалы, возникшие естественным образом, а в лабораториях мы просто их повторяли, то эпоха гетероструктур привела к созданию материалов, свойства которых определяются, вообще говоря, замыслом и новыми принципами, которые привносятся в ходе создания гетероструктур. С помощью технологических методов мы даже получаем возможность создания того, что называется теперь созданием "искусственных атомов".
Это сразу же очень много дало для электроники. Возникновение сверхбыстрой электроники связано с биполярными гетеротранзисторами и с так называемыми транзисторами на высокой электронной подвижности. Сверхбыстрая электроника существенным образом изменила скорости всех электронных компонентов и сегодня является основными компонентами в космической связи, мобильных телефонах и во многом другом. В наших российских лабораториях искусственные атомы и их ансамбли выращиваются в гетероструктурах, которые позволили создавать принципиально новые типы полупроводниковых лазеров. Лазеры на двойных гетероструктурах позволили сегодня получить коэффициент полезного действия лазеров в семьдесят четыре процента, и это самый высокоэффективный преобразователь электрической энергии в световую.
Сегодня часто говорится о том, что электронные рынки давно поделены, и что России не удастся войти в мировой рынок электронной техники. Но не стоит забывать о том, что соотношение долей мирового рынка на протяжении двадцатого века не раз изменялось. В начале 1970-х годов Соединенные Штаты Америки были основным производителем полупроводниковых электронных компонентов. В начале 1980-х годов конкуренцию США составила Япония, а затем появился третий сегмент, страны Юго-Восточной Азии, и четвертый — это Европа. Эти четыре части примерно равны по объемам производства. Сегодня Китай бурно развивает эту отрасль промышленности и, скорее всего, в будущем станет пятым основным производителем полупроводниковой электроники.
Практически каждые десять лет в мировой электронной промышленности происходила смена размера кремниевых подложек, на которых изготовляются кремниевые интегральные схемы. И сейчас, после десятилетнего срока развития двухсотмиллиметровых кремниевых подложек, происходит массовый переход на трёхсотмиллиметровые. Те предприятия микроэлектронной промышленности, которые используют новейшие кремниевые подложки, сегодня наиболее бурно развиваются. В Европе первое предприятие такого типа "Инфинеон" появилось около Дрездена, в ближайшем будущем планируется создать еще четыре подобных. В целом во всем мире появилось более тридцати новых предприятий на трёхсотмиллиметровых подложках, и более половины из них будет построено в Китае.
В нашей стране существует позиция, что современная промышленная микроэлектроника — очень дорогое удовольствие. Действительно, на создания предприятия на трёхсотмиллиметровой подложке с существенными объемами производства потребуется не меньше двух с половиной миллиардов долларов. Но окупаемость его происходит за шесть-семь лет. Сегодня именно такие предприятия являются основой развития полупроводниковой электроники. Выход России из сырьевой ловушки может произойти только посредством организации самого современного на сегодняшний день полупроводникового производства. Это должно быть производство сверхбольших интегральных схем на трёхсотмиллиметровых подложках с основным топологическим размером в одну десятую микрона, современной оптоэлектронники и сверхбыстрых компонентов гетероструктур. Ведь если мы будем идти поэтапно, то фактически обрекаем себя на полное отставание.
Читать дальшеИнтервал:
Закладка: