Никола Тесла - Лекции

Тут можно читать онлайн Никола Тесла - Лекции - бесплатно ознакомительный отрывок. Жанр: Прочая документальная литература. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Никола Тесла - Лекции краткое содержание

Лекции - описание и краткое содержание, автор Никола Тесла, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Перед вами, читатель, вторая книга, впервые изданная на русском языке, состоящая из шести лекций и двух речей Николы Теслы, прочитанных им в самых престижных научных и учебных заведениях Америки, Англии, Франции.

Потрясающие природные данные, неугасимое стремление к знаниям, живой интерес ко всему, чем так богат мир, постоянное самосовершенствование сделали из Николы Теслы уникальную личность, чей изобретательский талант и провидческие идеи еще предстоит по-настоящему оценить будущим поколениям. Лекции и речи читаются с большим интересом, поскольку дают возможность узнать Николу Теслу как большого ученого, глубокого философа и оригинального лингвиста.

Лекции - читать онлайн бесплатно ознакомительный отрывок

Лекции - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Никола Тесла
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В целом процесс откачки воздуха выглядел так: вначале, когда запорные краны С и C 1открыты, а все остальные сочленения закрыты, резервуар R 2был поднят так высоко, что ртуть заполнила резервуар R 1 и узкую часть U-образной трубки. Когда помпа начинала работать, ртуть, конечно, быстро поднималась в трубке, а резервуар R 2, опускался, причем исследователь удерживал ртуть примерно на том же уровне. Резервуар R 2уравновешивался длинной пружиной, которая облегчала эту работу, а трения частей было до-статочно, чтобы удерживать его в любом положении. Когда насос Шпренгеля заканчивал свою работу, резервуар R 2опускался еще ниже и уровень ртути в R 1опускался и она заполняла R 2, после чего клапан С 2закрывался. Воз-дух, прижатый к стенкам R 1, и воздух, поглощенный ртутью, выпускался, и чтобы освободить ртуть от всего воздуха, резервуар R 2много раз опускался и поднимался. Во время этого процесса некоторое количество воздуха, которое собиралось под запорным краном С 2, выгонялось из R 2путем опускания его достаточно низко и открывания крана; кран закрывался перед тем, как поднять сосуд. Когда весь воздух был удален из ртути и больше не скапливался в R 2, его опускали и прибегали к помощи едкого кали. Теперь резервуар R 2был снова поднят, пока ртуть в R 1 не устанавливалась выше крана С 1Поташ плавили и кипятили, и влага частично устранялась насосом, а частично реадсорбировалась; и этот процесс нагрева и охлаждения повторялся много раз, и каждый раз после того, как влага впитывалась или выгонялась, резервуар R 2много раз поднимали и опускали. Таким образом из ртути удалялась вся влага и оба резервуара были готовы к работе. Тогда резервуар R 2поднимался в верхнее положение и помпу включали на длительный срок. Когда достигалась наивысшая степень вакуума, колба с поташ ем оборачивалась хлопковой тканью, пропитанной эфиром, для того, чтобы держать ее при низкой температуре, затем резервуар R 2опускали и, после того как резервуар R 1опустел, приемник г быстро закупоривали.

Когда вставляли новую колбу, ртуть поднималась выше крана C 1, который был закрыт для того, чтобы оба резервуара и ртуть находились в наилучшем состоянии, и ртуть никогда не удалялась из R f, за исключением тех случаев, когда достигалась наивысшая степень откачки. Необходимо соблюдать это правило, чтобы устройство хорошо работало.

Применяя такую конструкцию, я работал очень быстро, а когда устройство было в абсолютном порядке, можно было получить флюоресценцию в небольшой колбе менее чем за 15 минут, что, конечно, очень быстро для небольшой лабораторной установки, которая потребляет примерно 100 фунтов ртути. При работе с небольшими колбами соотношение емкости насоса, приемника и сочленений и резервуара R было примерно 1-20, а уровень достигаемого вакуума обязательно очень высокий, хотя и не могу назвать точные цифры и уверенно сказать, насколько высок уровень.

Исследователя в процессе опытов более всего впечатляет поведение газов, подвергнутых воздействию высокочастотного электростатического напряжения. Но его не должно покидать сомнение: можно ли наблюдаемые эффекты отнести именно на счет молекул или атомов газа, чей химический анализ происходит перед ним, или в игру вступает другое газообразное вещество, имеющее в своем составе атомы или молекулы, погруженные в жидкость, заполняющую пространство. Такая среда обязательно должна существовать, и я убежден, что, например, даже при отсутствии воздуха поверхность и пространство вокруг предмета нагревались бы от быстро колеблющегося потенциала тела; но такого нагрева поверхности и окружающего пространства не может произойти при удалении всех свободных атомов, если бы осталась однородная, несжимаемая и эластичная жидкость — какой должен быть эфир, — ибо тогда не было бы ни ударов, ни столкновений. В таком случае, что касается самого тела, могут происходить только внутренние потери от трения.

Поразительным является то, что разряд сквозь газ проходит тем легче, чем больше частота импульсов. В этом случае его поведение диаметрально противоположное металлическому проводнику. В последнем случае с повышением частоты роль импеданса возрастает, но газ ведет себя скорее как цепь конденсаторов: возможность прохождения заряда через него, видимо, зависит от скорости изменения потенциала. Если это так, тогда в вакуумной трубке любой длины, неважно какова сила тока, самоиндукция будет ничтожно мала. Тогда мы имеем проводник в виде газа, способный передавать электрические импульсы любой частоты которую мы сможем получить. Если бы частоту удалось поднять до достаточно высокого уровня, тогда можно было бы реализовать любопытную систему распределения электроэнергии, которая заинтересовала бы газовые компании: металлические трубы, заполненные газом, где металл — это изолятор, а газ — проводник. Конечно, можно изготовить полый медный стержень, разрядить в нем газ, и пропуская импульсы достаточно высокой частоты через контур вокруг него, довести газ внутри до высокой степени накала; но что касается сил, то весьма сомнительно, будет ли при таких импульсах медный стержень действовать как статический экран. С такими парадоксами и очевидно невозможными ситуациями мы сталкиваемся на каждом шагу в нашей работе, и именно в них в большой степени и заключается основная привлекательность исследований.

Здесь у меня короткая широкая трубка, из которой откачан воздух, покрытая толстым слоем бронзы, не дающей свету поступать внутрь. Металлический зажим для подвешивания трубки укреплен посередине и касается трубки. Теперь я хочу зажечь газ внутри, подвесив трубку на проводе, соединенном с катушкой. Любой, кто проводит этот опыт впервые, скорее всего пожелает остаться в одиночестве, дабы не стать посмешищем для ассистентов. И всё же трубка освещается, несмотря на металлическое покрытие, и свет ясно виден сквозь него. Длинная трубка, покрытая алюминиевой бронзой, довольно ярко загорается, если ее держать в одной руке, а другой касаться вывода катушки. Мне могут возразить, что покрытия недостаточно хорошие проводники; однако, даже если они имели бы большое сопротивление, они должны экранировать газ. Конечно, они экранируют газ, находясь в состоянии покоя, но не так хорошо, когда на них волнообразно воздействуют. Потери энергии в трубке, несмотря на экран, происходят благодаря газу. Если бы мы взяли полый металлический шар и заполнили его абсолютно несжимаемым жидким диэлектриком, внутри шара не было бы потерь, и, соответственно, можно было бы сказать, что содержимое прекрасно экранировано, хотя потенциал и быстро меняется. Даже если шар заполнить маслом, потери всё равно были бы меньше в сравнении с газом, так как в последнем случае сила порождает смещения, а это означает удары и столкновения.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Никола Тесла читать все книги автора по порядку

Никола Тесла - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Лекции отзывы


Отзывы читателей о книге Лекции, автор: Никола Тесла. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x