Вин Венгар - Неужели я гений?
- Название:Неужели я гений?
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:1997
- Город:Питер
- ISBN:5-88782-298-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Вин Венгар - Неужели я гений? краткое содержание
Конечно, вы слышали, что в человеке таятся скрытые таланты и «тайные» способности- Вы наверняка согласитесь и с тем, что высокий интеллект и блестящие идеи не помешают ни на работе, ни в личной жизни. Как найти дорогу в «пещеру Аладдина», где хранятся жемчуг остроумия, бриллианты сообразительности, золото мудрости? Как «подружиться» со своим подсознанием, узнать ваш собственный «фактор Эйнштейна», развить интуицию? Эта книга предлагает открыть дверь в сокровищницу быстрых, смелых, необычных и точных мыслей, способных решить любую проблему.
Неужели я гений? - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Как сделать гения
Принято считать, что гением нужно родиться. А вот Мариан Даймон посвятила свою работу «выращиванию» гениев в лабораторных условиях. В своем впоследствии знаменитом эксперименте она поместила несколько крыс в обстановку, стимулирующую развитие: их клетки были наполнены качелями, лесенками, «беличьими колесами» и разнообразными игрушками. А другим крысам достались совершенно пустые клетки. В стимулирующей среде крысы не только дожили до трех лет (что соответствует примерно девяноста годам человека), но у них увеличились и размеры мозга. Между нервными клетками вырос целый лес новых соединений в форме дендритов и аксонов — тонких разветвленных структур, передающих электрические сигналы от одной нервной клетки ( нейрона ) к другой. Крысы, обитавшие в обычных клетках, умирали раньше. Их мозг имел значительно меньше межклеточных соединений, чем у стимулировавшихся собратьев, и в какой-то момент развитие животных останавливалось вовсе.
Еще в 1911 году отец нейроанатомии Сантьяго Рамон-и-Кахаль обнаружил, что количество соединений между нейронами ( синапсов ) является мерой гениальности, причем этот показатель оказывается более существенным, нежели общее число нейронов. Эксперименты, проведенные Даймон, показали, что «физический механизм гениальности» можно создать путем умственных упражнений, по крайней мере, у крыс.
Применим ли этот принцип к людям? Даймон пыталась найти ответ на этот вопрос. Она изучала фрагменты мозга Эйнштейна. Как и ожидалось, в левом полушарии ей удалось обнаружить повышенное число глиальных клеток. Даймон назвала этот нейрологический коммутатор «ассоциативной областью других ассоциативных областей мозга». Глиальные клетки служат «клеем», связывающим нервные клетки друг с другом; они способствуют передаче электрохимических сигналов между нейронами. Именно это и ожидала увидеть Даймон, уже наблюдавшая повышенную концентрацию глиальных клеток у подопытных крыс. Присутствие их большого количества и в мозгу Эйнштейна указывало на сходство процессов обогащения ими мозга.

Рис. 1.2.Нейроны не воспроизводятся с рождения. Но аксоны, дендриты и глиальные клетки, обеспечивающие электрохимическое взаимодействие между нейронами, продолжают расти, пока мы учимся. Становление этих связей имеет гораздо большее значение для развития интеллекта, нежели количество нейронов в мозгу.
Однако в отличие от нейронов, которые не воспроизводятся с момента рождения, количество глиальных клеток, аксонов и дендритов может увеличиваться на протяжении всей жизни, если правильно использовать мозг. Исследования Даймон позволяют предположить, что чем активнее мы учимся, тем больше возникает таких соединений (рис. 1.2). И напротив, стоит нам прекратить обучение и позволить мозгу погрузиться в застой, соединительные клетки начинают отмирать.
Вывод для преподавателей очевиден. Если мозг Эйнштейна в чем-то устроен подобно мозгу подопытных крыс, то это значит, что путем достаточно интенсивной тренировки ума можно вырастить новых эйнштейнов.
Какие же типы умственных упражнений можно предложить человеку в качестве аналога качелям, лесенкам и «беличьим колесам» в крысиных клетках? Сам Эйнштейн имел некоторые соображения на этот счет. Он полагал, что можно стимулировать появление глубоких и оригинальных мыслей, предоставляя полную свободу своему воображению, не ограничивая его традиционными условными запретами.
Эйнштейн относит открытие теории относительности не на счет своего особого дарования, а напротив — на счет собственного так называемого «задержавшегося» развития.
«Нормального взрослого никогда не станут беспокоить проблемы пространства и времени, — рассуждал Эйнштейн. — Есть вещи, о которых задумываешься только в детстве. Но мое интеллектуальное развитие задержалось, в результате чего я начал размышлять о пространстве и времени, будучи далеко не юным».
Как Эйнштейн оседлал луч света
В своих последних автобиографических записках Эйнштейн вспоминает озарение, которое привело его к созданию специальной теории относительности. Оно явилось неожиданно, когда шестнадцатилетним юношей он просто мечтал о чем-то. «А что, если… — подумал он тогда, — лететь рядом с лучом света с его же скоростью?»
Нормальные взрослые, как резонно заметил Эйнштейн, обычно заглушают в себе подобные вопросы, а если они все-таки возникают, то быстро забывают о них. Видимо, именно это и имел в виду Уинстон Черчилль, когда говорил, что «много людей спотыкаются о великие открытия, но большинство из них просто перешагивают и идут дальше».
Эйнштейн был исключением. Не имея ясного представления о том, куда заведет его этот вопрос, он размышлял над ним целых десять лет. И чем больше он думал, тем больше вопросов возникало перед ним. Отыскивая ответ на каждый новый вопрос, он шаг за шагом приближался к истине.
«Ощущение» относительности
Предположим, что через несколько лет после того, как возник вопрос о луче света, Эйнштейн задался вторым: «А что, если… оседлать луч света и держать перед собой зеркало? Можно ли тогда увидеть свое отражение?» Классическая физика давала бесспорный ответ: нет, поскольку, чтобы достичь зеркала, свет, отражающийся от вашего лица, должен был бы двигаться быстрее светового луча.
Однако Эйнштейн не согласился с таким ответом, несмотря на то, что он соответствовал всем неопровержимым фактам. По каким-то необъяснимым причинам Эйнштейн почувствовал , что это неверно. Ему показалось абсурдным, что, глядя в зеркало, человек ничего не увидит. Доверившись своей интуиции больше, чем известным и общепринятым законам физики, он мысленно представил себе Вселенную, где, даже мчась со скоростью света, можно видеть себя в зеркале. Прошли годы, прежде чем ему удалось подкрепить свои умозрительные представления математически. Именно внутреннее чутье, а не математический расчет, привело Эйнштейна к правильному ответу.
«Открытие не является продуктом логического размышления, — полагал Эйнштейн, — даже если окончательный результат привязан к строгой логической структуре».
За редким исключением, все великие открытия в науке были сделаны интуитивно, в результате мысленных экспериментов. Эйнштейн не был первооткрывателем этого метода, но являлся самым выдающимся и активным его сторонником. Поэтому мы и назовем такой метод эйнштейновским методом открытий . Широкой известностью пользуется книга на эту тему Сиднея Дж. Парнеса «Игра воображения: искусство развития способности делать открытия», изданная Фондом творческого образования.
Читать дальшеИнтервал:
Закладка: