Журнал Наука и жизнь, 2000 № 05
- Название:Журнал Наука и жизнь, 2000 № 05
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2000
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Журнал Наука и жизнь, 2000 № 05 краткое содержание
Журнал Наука и жизнь, 2000 № 05 - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Как рассчитать торнадо? Очевидно, что для этого надо решить задачу о локальном изменении погоды, то есть задачу о движении масс воздуха и распределении тепла в неком регионе. Принципиально это несложно, однако на практике возникают две проблемы. Проблема первая: чтобы заметить появление смерча, надо проводить расчет на характерных для его образования размерах, то есть на расстояниях порядка двух километров. Вторая трудность связана с правильным заданием начальных и граничных условий. Дело в том, что температура на границах интересующего вас региона зависит от того, что делается в соседних регионах. Рассуждая дальше, легко убедиться, что мы не можем решить задачу о смерче, не имея данных о климате на всей Земле. Климат на планете рассчитать можно, что и делается каждый день во всех странах для составления среднесрочных прогнозов погоды. Однако имеющиеся ресурсы позволяют вести расчеты лишь с очень большим шагом — десятки и сотни километров. Ясно, что к предсказанию смерчей такой прогноз не имеет никакого отношения.
Необходимо совместить две, казалось бы, плохо совместимые задачи: глобальный расчет, где шаг очень большой, и локальный, где шаг очень маленький. Сделать это можно, но лишь собрав в кулаке действительно фантастические вычислительные ресурсы. Дополнительная трудность состоит еще и в том, что вычисления не должны продолжаться более 4 часов, так как за 5 часов картина погоды смазывается совершенно, и все, что вы считаете, уже не имеет никакого отношения к реальности. Нужно не только обработать гигантский объем данных, но и сделать это достаточно быстро. Такое под силу лишь суперкомпьютерам.
Предсказание погоды — далеко не единственный пример использования суперкомпьютеров. Сегодня без них не обойтись в сейсморазведке, нефте- и газодобывающей промышленности, автомобилестроении, проектировании электронных устройств, фармакологии, синтезе новых материалов и многих других отраслях.
ASCI RED, детище программы Accelerated Strategic Computing Initiative, — самый мощный на сегодняшний день компьютер. Построенный по заказу Министерства энергетики США, он объединяет 9632 (!) процессора Pentium Pro, имеет более 600 Гбайт суммарной оперативной памяти и общую производительность 3200 миллиардов операций в секунду.
Так, поданным компании Ford, для выполнения crash-тестов, при которых реальные автомобили разбиваются о бетонную стену с одновременным замером необходимых параметров, со съемкой и последующей обработкой результатов, ей понадобилось бы от 10 до 150 прототипов для каждой новой модели. При этом общие затраты составили бы от 4 до 60 миллионов долларов. Использование суперкомпьютеров позволило сократить число прототипов на одну треть.
Известной фирме DuPont суперкомпьютеры помогли синтезировать материал, заменяющий хпорофлюорокарбон. Нужно было найти материал, имеющий те же положительные качества: невоспламеняемость, стойкость к коррозии и низкую токсичность, но без вредного воздействия на озоновый слой Земли. За одну неделю были проведены необходимые расчеты на суперкомпьютере с общими затратами около 5 тысяч долларов. По оценкам специалистов DuPont, использование традиционных экспериментальных методов исследований потребовало бы 50 тысяч долларов и около трех месяцев работы — и это без учета времени, необходимого на синтез и очистку требуемого количества вещества.
Итак, мы видим, что без суперкомпьютеров сегодня действительно не обойтись. Осталось прояснить еще один вопрос: почему они считают так быстро? Это может быть связано, во-первых, с развитием элементной базы и, во-вторых, с использованием новых решений в архитектуре компьютеров.
Попробуем разобраться, какой из этих факторов оказывается решающим для достижения рекордной производительности. Обратимся к известным историческим фактам. На одном из первых компьютеров мира EDSAC, появившемся в 1949 году в Кембридже и имевшем время такта 2 микросекунды (2∙10 -6секунды), можно было выполнить 2 n арифметических операций за 18 n миллисекунд, то есть в среднем 100 арифметических операций в секунду. Сравним с одним вычислительным узлом современного суперкомпьютера Hewlett-Packard V2600: время такта приблизительно 1,8 наносекунды (1,8∙10 -9секунды), а пиковая производительность — около 77 миллиардов арифметических операций в секунду.
Что же получается? За полвека производительность компьютеров выросла более чем в семьсот миллионов раз. При этом выигрыш в быстродействии, связанный с уменьшением времени такта с 2 микросекунд до 1,8 наносекунды, составляет лишь около 1000 раз. Откуда же взялось остальное? Ответ очевиден — за счет использования новых решений в архитектуре компьютеров. Основное место среди них занимает принцип параллельной обработки данных, воплощающий идею одновременного (параллельного) выполнения нескольких действий.
Различают два способа параллельной обработки: собственно параллельную и конвейерную. Оба способа интуитивно абсолютно понятны, поэтому сделаем лишь небольшие пояснения.
Параллельная обработка
Предположим для простоты, что некое устройство выполняет одну операцию за один такт. В этом случае тысячу операций такое устройство выполнит за тысячу тактов. Если имеется пять таких же независимых устройств, способных работать одновременно, то ту же тысячу операций система из пяти устройств может выполнить уже не за тысячу, а за двести тактов. Аналогично система из N устройств ту же работу выполнит за 1000/ N тактов. Подобные примеры можно найти и в жизни: если один солдат выкопает траншею за 10 часов, то рота солдат из пятидесяти человек с такими же способностями, работая одновременно, справится с той же работой за 12 минут— принцип параллельности в действии!
Кстати, пионером в параллельной обработке потоков данных был академик А. А. Самарский, выполнявший в начале 50-х годов расчеты, необходимые для моделирования ядерных взрывов. Самарский решил эту задачу методом сеток, посадив несколько десятков барышень с арифмометрами за столы (узлы сетки). Барышни передавали данные одна другой просто на словах и откладывали необходимые цифры на арифмометрах. Таким образом, в частности, была рассчитана эволюция взрывной волны. Работы было много, барышни уставали, а Александр Андреевич ходил между ними и подбадривал. Так создали, можно сказать, первую параллельную систему. Хотя расчеты водородной бомбы провели мастерски, точность их оказалась очень низкой, потому что узлов в используемой сетке было мало, а время счета получалось слишком большим.
CRAY ТЗЕ— массивно-параллельный компьютер фирмы Тега Computer Company. Состоит из процессорных элементов, включающих процессор Alpha 21164 (с тактовой частотой 450 или 600 МГц), блок памяти объемом от 256 Мбайт до 2 Гбайт и устройство сопряжения с сетью. Системы ТЗЕ могут содержать до 2048 процессорных элементов.
Читать дальшеИнтервал:
Закладка: