Журнал Наука и Техника (НиТ) - «Наука и Техника» [журнал для перспективной молодежи], 2006 № 01 (1)
- Название:«Наука и Техника» [журнал для перспективной молодежи], 2006 № 01 (1)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2006
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Журнал Наука и Техника (НиТ) - «Наука и Техника» [журнал для перспективной молодежи], 2006 № 01 (1) краткое содержание
«Наука и Техника» [журнал для перспективной молодежи], 2006 № 01 (1) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Орбиты внесолнечных планет сильно различаются по величине эксцентриситета е. В Солнечной системе у большинства планет эксцентриситет орбиты небольшой. Так, у Земли орбита почти круговая е = 0.0167. Более всего вытянуты орбиты у Меркурия (е = 0.21) и Плутона (е = 0.24). В то же время в других планетных системах есть планеты с очень вытянутыми орбитами, с эксцентриситетом до 0.7.
Блестящим подтверждением результатов доплеровского метода явилось наблюдение затмения у звезды HD 209458. У нее планета с массой 1.43MJ была ранее обнаружена по изменениям лучевой скорости. По найденным параметрам орбиты были предсказаны ожидаемые моменты затмений. Продолжительность “затмения” — несколько часов. Планета у HD 209458 короткопериодическая, период обращения всего 3.5 суток; поэтому такие затмения можно наблюдать очень часто. Первые успешные результаты дал и транзитный метод в рамках программы OGLE: у четырех звезд солнечного типа найдены короткопериодические планеты.
Большинство звезд, у которых к настоящему времени открыты планеты, принадлежат к спектральному классу G главной последовательности; среди них есть также несколько красных карликов класса М. Обнаружение планет у красных гигантов — гораздо более трудная задача. Здесь не подходит ни один из перечисленных выше методов. Все известные яркие красные гиганты — звезды высокой светимости — находятся на расстояниях в сотни парсеков от Земли. Их собственные движения очень малы. Для того чтобы найти в их движении малые отклонения, вызванные планетой, нужны сотни и тысячи лет высокоточных астрометрических наблюдений. Доплеровский метод годится лишь для относительно ранних красных гигантов, принадлежащих к спектральному классу К. Только у этих звезд можно найти в спектре достаточно узкие и резкие атомарные линии поглощения, которые дадут возможность измерять лучевую скорость звезды с необходимой точностью. К более поздним звездам классов М, S, С с переходом на АВГ доплеровский метод становится неприменимым. Безнадежно также искать затмения: планета закрывает малую часть огромного диска красного гиганта, и блеск звезды во время затмения ослабеет на ничтожную величину — собственные вариации блеска красных гигантов гораздо больше. Прямые наблюдения планет у красных гигантов вряд ли возможны по причине большой удаленности этих звезд. Тем не менее, по косвенным признакам все же можно определить, обладает ли красный гигант на стадии АВГ планетой. Как — об этом в следующих разделах.
Итак, после нескольких миллиардов лет, проведенных на главной последовательности, звезда с массой, близкой к солнечной, перейдет в стадию красного гиганта. Радиус звезды возрастет сначала в несколько десятков, затем в несколько сотен раз и достигнет одной астрономической единицы (а.е.). Если у звезды была планетная система, то на стадии АВГ более близкие планеты, с большими полуосями орбит а < 1 а. е., окажутся погруженными в атмосферу звезды. Планеты внутри этой зоны (в нашей системе это Меркурий и Венера) будут поглощены расширившейся атмосферой звезды, затормозятся в ней и, двигаясь по спиральной траектории к центру звезды, испарятся. Первыми сгорят “горячие Юпитеры”, движущиеся на орбитах с большими полуосями в сотые доли астрономической единицы. Более удаленные планеты (такие, как Марс, Юпитер, Сатурн и т. д.), скорее всего, выживут. Неясна судьба планет, удаленных на а ~ 1 а. е., в том числе Земли. Конечный результат в значительной степени зависит от принятой модели эволюции звезды, в том числе нашего Солнца. Уменьшение радиуса звезды на несколько процентов может дать нашей планете шанс пережить стадию АВГ Солнца. Если же радиус Солнца как красного гиганта окажется на несколько процентов больше, наша планета погибнет. Такое событие для стороннего наблюдателя может не пройти незамеченным. Пример тому — возможное поглощение планетной системы звездой V838 Единорога. В 2002 году эта звезда испытала подряд три вспышки с интервалом в несколько месяцев. До этого V838 Единорога, вероятнее всего, относилась к звездам главной последовательности класса F. После вспышки она эволюционирует к более низким температурам и более поздним спектральным классам. Большинство исследователей сочли звезду пекулярной новой. Была предложена и другая интерпретация: при быстром переходе к стадии красного гиганта V838 Единорога поглотила одну за другой три планеты, обращавшиеся на близких орбитах; удалось, таким образом, увидеть редчайший случай гибели целой планетной системы.
Насколько часто могут наблюдаться подобные катастрофы? На сегодня поиск планетных систем доплеровским методом привел к открытию планет у нескольких красных гигантов и субгигантов спектральных классов К. Их параметры перечислены в таблице, составленной по данным Каталога внесолнечных планет Медонской обсерватории, Франция. Среди проэволюционировавших звезд это, если можно так выразиться, еще “молодняк”. Радиусы этих звезд от 4 до 23Ro; они пока не “глотают” свои планеты, им только предстоит разрастись до размеров типичных звезд АВГ. Эти звезды находятся в начальной стадии перехода к красным гигантам. Планета с массой ~11MJ (не подтверждено), возможно, обнаружена также у гиганта K5III Альдебаран (а Тельца), одной из наиболее ярких звезд зимнего неба. Радиус Альдебарана — половина расстояния от Солнца до Меркурия.
Так может выглядеть планетная система звезды-красного гиганта
Если планета пока не испарилась, что будет с ней, когда центральная звезда расширится почти до орбиты планеты? Планета, обращающаяся вокруг звезды с массой М*~1Мо на расстоянии в 1 а.е., движется со скоростью Vp1 ~ 30 км/с. Если звезда достигла АВГ, то планета оказывается погруженной в среду с температурой ~2000 К и плотностью ~10 12-10 13г/см 3. При таких условиях скорость звука -3.4 км/с. Движение планеты оказывается гиперзвуковым, оно сходно с движением крупного метеоритного тела в атмосфере Земли. Образуется мощная коническая ударная волна, ионизующая газ и нагревающая его до 10 000-15 000 К.
Верхняя атмосфера звезды АВГ — достаточно разреженный газ, если подходить к ней с мерками для атмосфер звезд главной последовательности: у основания хромосферы Солнца плотность достигает 1016 г/см 3. По земным понятиям атмосфера красного гиганта — вообще глубокий вакуум. В столь разреженной среде планета хоть и тормозится, но не очень сильно. Оценки показывают, что в течение стадии АВГ (которая занимает не более одного миллиона лет) большая полуось планетной орбиты уменьшится из-за торможения не более чем на 20 %. Масса планеты невелика по сравнению с массой звезды. Тем не менее, движение планеты типа Юпитера может оказать сильное влияние на саму звезду и на ее оболочку, сброшенную после перехода к белому карлику.
Читать дальшеИнтервал:
Закладка: