Журнал «Юный техник» - Юный техник, 2005 № 12

Тут можно читать онлайн Журнал «Юный техник» - Юный техник, 2005 № 12 - бесплатно полную версию книги (целиком) без сокращений. Жанр: Циклы, год 2005. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Журнал «Юный техник» - Юный техник, 2005 № 12 краткое содержание

Юный техник, 2005 № 12 - описание и краткое содержание, автор Журнал «Юный техник», читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Популярный детский и юношеский журнал.

Юный техник, 2005 № 12 - читать онлайн бесплатно полную версию (весь текст целиком)

Юный техник, 2005 № 12 - читать книгу онлайн бесплатно, автор Журнал «Юный техник»
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Кроме того, сама решетка по разным причинам теряет строгую форму. Это резко ухудшает свойства металлов — реальная прочность их примерно в 1000 раз меньше, чем могла быть при идеальной кристаллической решетке. А что бы случилось с металлом, не будь у него вообще никакой кристаллической решетки?.. Впервые об этом ученые задумались довольно давно. Еще в 60-е годы XX века они нашли два основных способа получать из жидкого металлического расплава металл в твердом, но аморфном состоянии. Как осуществили сверхбыстрое замораживание расплавленного металла в ЦНИИчермете, мы уже описали выше. На мчащейся ленте, охлаждаемой жидким гелием, скорость затвердевания достигает миллиона градусов в секунду. Иначе говоря, металл застывает за тысячные доли секунды!

Но и этого бывает недостаточно! А потому в специальном конструкторском бюро Института металлургии РАН имени А.А.Байкова использовали другой способ. Расплавленный металл прямо из тугоплавкого тигля пускают в тончайший зазор между охлаждаемыми медными валками. Замораживание идет сразу с обеих сторон, потому и скорость охлаждения гораздо выше — миллионы градусов в секунду!

Механизм этого воздействия работает по принципу стоп-кадра в кино: только что все было в движении — и вдруг застыло в самых неожиданных позах. Так и здесь. Атомы, моментально застывая, не успевают выстроиться в кристаллическую решетку. Холод как бы примораживает их к месту в том положении, в котором они находились в расплаве.

Под микроскопом видно металл превратился в аморфную массу Нужна золотая - фото 12

Под микроскопом видно: металл превратился в аморфную массу.

Нужна золотая середина…

От полученного металлостекла ожидали многого. Теоретики, например, полагали, что такому материалу может быть не страшна коррозия — ведь она начинается на поверхностных границах крохотных зерен-кристалликов, из которых состоит поверхность металла, вгрызается вглубь, постепенно разрушая структуру.

Действительность превзошла все ожидания. Да, у аморфного металла, как и предсказывали, уникальная коррозионная стойкость. Кузов автомобиля, сделанный из него, служил бы верой и правдой сотни лет без всяких смазок И покрытий. Кроме того, прочность металлостекла оказалась в десятки раз большей, чем у обычной стали! Оно вдобавок обладает замечательными магнитными свойствами, способностью к сверхпроводимости, у него очень малы потери энергии при перемагничивании…

Однако наряду с достоинствами у стеклометаллов обнаружились и свои недостатки. Они, к примеру, довольно хрупки — если нагрузка превысит определенный предел, могут сразу рассыпаться, подобно стеклу обычному.

А нельзя ли как-то соединить достоинства обоих классов материалов, оставив за скобками недостатки? Это и удалось сделать физикам Дармштадта. Недавно они получили материал, который обладает уровнем пластической деформации при комнатной температуре до 20 % (этим редко могут похвастать и многие из обычных металлов) и в то же время полным набором преимуществ стеклометалла. При деформации, например, такой материал повышает свою прочность, а не снижает ее, как обычно. Это очень удобно, скажем, при изготовлении детали штамповкой или ковкой. Берете довольно мягкую заготовку, а из-под штампа выходит гораздо более твердая и прочная деталь.

Чтобы получить один из таких сплавов, Фалько Байер, инженер-физик факультета материаловедения, готовит расплав электротехнической меди с добавлением циркония и алюминия, а затем охлаждает его со скоростью 250 градусов в секунду.

«Если охлаждать расплав быстрее, получится стеклометалл чистой воды, — поясняет физик. — Если охлаждать чересчур медленно — образуется обычная кристаллическая структура. Так что истина, как это часто бывает, где-то посередине».

Ф Байердоволен все получилось как надо Как показали исследования шлифов под - фото 13

Ф. Байердоволен: все получилось как надо…

Как показали исследования шлифов под микроскопом, в таких материалах образуются микроструктры, отличающиеся по своему строению от окружающего материала. Сами размеры таких включений не превышают нескольких нанометров, но и этого уже достаточно, чтобы стеклометалл вел себя совершенно иначе.

Кристаллики не дают распространяться микротрещинам, которые обычно и приводят к разрушению материала. А пластичность в сочетании с высокой коррозионной стойкостью — свойство, которое высоко ценится в современном машиностроении. Что еще очень ценно — получающиеся сплавы обладают весьма малой плотностью, то есть получаются весьма легкими. А значит, могут найти себе применение в авиации и космической отрасли.

И мало, и дорого…

Процесс получения новых материалов пока еще не отработан окончательно и позволяет получать лишь сравнительно небольшие образцы — прутки величиной со спичку, пластины размерами с визитную карточку. И все-таки материаловеды полагают, что отработка технологии получения новых сплавов — дело ближайших лет.

Скажем, коллектив сотрудников Окриджской национальной лаборатории (США) разработал дешевый сплав не на основе дорогих циркония и палладия, как большинство нынешних стеклометаллов, а на аморфном варианте стали, основной элемент которой составляет железо.

«Все элементы, которые мы используем в наших сплавах, дешевы», — говорит один из разработчиков, Жао Пинг Лy. И в самом деле, новые сплавы снизили цену на аморфные металлы в среднем от 220 долларов до 33 долларов за килограмм. Однако обычная сталь пока что стоит все равно дешевле. Кроме того, ученым и раньше удавалось получать аналогичные сплавы, но в очень маленьких количествах.

Дело в том, что в бруске такой стали, размеры которого превышают 4 мм, начинаются процессы кристаллизации и, соответственно, уменьшается прочность. Лу с коллегами решил эту проблему, использовав смесь из железа, хрома, марганца, молибдена, углерода, бора и лишь с небольшой добавкой (1,5 %) иттрия.

Пока, впрочем, удалось изготовить брусок аморфной стали шириной 12 мм, но ученые уверены, что это только начало. Тем более что на горизонте уже обозначились первые заказчики, готовые вложить средства для быстрейшего достижения окончательных результатов. Так, большую заинтересованность в стеклометаллах проявил автомобильный концерн «Порше», несколько крупных международных фирм, выпускающих разнообразные агрегаты, приборы и устройства для авиакосмической промышленности, и даже производители металлической кухонной посуды высшего качества. Продолжают работу с металлостеклом и наши специалисты.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Журнал «Юный техник» читать все книги автора по порядку

Журнал «Юный техник» - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Юный техник, 2005 № 12 отзывы


Отзывы читателей о книге Юный техник, 2005 № 12, автор: Журнал «Юный техник». Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x