Журнал «Юный техник» - Юный техник, 2005 № 09
- Название:Юный техник, 2005 № 09
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2005
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Журнал «Юный техник» - Юный техник, 2005 № 09 краткое содержание
Популярный детский и юношеский журнал.
Юный техник, 2005 № 09 - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:


Для получения достаточно значительной тяги механизм должен обеспечивать отклонение предкрылка на плюс-минус 13 градусов относительно плоскости крыла. В обычных авиамоделях мотор служит для привода винта, который, благодаря своей инерции, накапливает энергию, необходимую для осуществления в двигателе такта сжатия и прохождения мертвых точек. Механизм вибропредкрылка энергии не накапливает. Поэтому на вал двигателя насажен маховик, чего обычно на авиамоделях не делается. Он же служит и кривошипом. Кроме того, на маховике имеются два стержня, служащие для запуска мотора, который производился ударом пальца по одному из них.
Отметим, что отладка и запуск поршневого двигателя с маховиком самостоятельная и не простая задача. Немалые трудности должны возникнуть и при отладке работы самого предкрылка. Можно лишь догадываться, сколько труда вложил А.И.Болдырев, прежде чем его модель поднялась в воздух.
Мы с вами можем применить электромотор, который не требует маховика и не имеет проблем с запуском. Он позволит произвести отладку работы предкрылка модели хоть дома на письменном столе. В этот момент электромотор может получать питание через адаптер от сети. После того как этот этап работы закончится, можно отправить модель в полет на корде или с аккумуляторами на борту.
Модель самолета Болдырева в конце 50-х годов была построена Б.С.Блиновым. По рассказам очевидцев, она взлетала после очень короткого пробега с письменного стола почти вертикально.
Будем надеяться, что у вас тоже все получится.
А.ИЛЬИН

СДЕЛАЙ ДЛЯ ШКОЛЫ
Как проверить Архимеда?

Одна из самых распространенных, пусть далеко не самых точных формулировок закона Архимеда гласит: «Тело, опущенное в воду, теряет в своем весе ровно столько, сколько весит вытесненная им вода».
Этой формулировки достаточно, чтобы строить океанские пароходы и даже… дирижабли. Несмотря на это, уроки по теме «Закон Архимеда» считаются самыми сложными. Возможно, это связано с тем, что школа всегда старалась дать ученику не только умение делать расчеты, но и понимание того, откуда сила Архимеда берется.
В прежние времена для наглядного разъяснения закона Архимеда существовало множество остроумных приборов. Но поскольку плаванье тел вызвано существующей в жидкости разностью давлений и «передачей его во всех направлениях без изменения», то разъяснение закона Архимеда начиналось с проверки закона Паскаля. Учитель и здесь имел богатый выбор приборов. Все они настолько просты, что вы сможете изготовить их, глядя на рисунки.
Начиналось с самого простого. В снабженный проволочным каркасом цилиндр из каучука наливали ртуть (тогда к ней относились без опаски). И оказывалось, что внизу его стенки раздуты особенно сильно, что свидетельствовало о росте давления с глубиной. Сегодня о ртути знают больше и потому резиновый воздушный шарик наполняют водой. Результат тот же.
В обоих случаях достигается лишь качественное подтверждение правоты Паскаля. Для точного же нужны измерения.
Приборы немецкого изобретателя Гартля позволяли измерять давление жидкости в сосуде на любой глубине в любом направлении. Вот как они действовали. В «аквариум» (рис. 1) опускалась особая чашка, укрепленная на шарнире, позволявшем ее повернуть или наклонить. На чашку была натянута резиновая пленка, а сама она при помощи шланга соединялась с атмосферным воздухом.

Пленка под действием давления прогибалась, а величина прогиба зависела от давления. Через рычажок пленка соединялась со стрелкой, которая двигалась по шкале. Давление воды прогибало пленку, и стрелка отклонялась, показывая в условных единицах его величину. Устройство и действие прибора было предельно понятным любому.
Но в те времена (начало XX века) все вещи рассчитывались на долгие годы работы и должны были быть просты в ремонте. Однако замена в приборе прорвавшейся пленки и присоединение ее к рычажку стрелки вызывало затруднения.
Гораздо надежней и проще в ремонте был другой прибор Гартля (см. рис. 2).

В нем затянутая пленкой чашка соединялась с водяным манометром. Прогибаясь под действием давления воды, пленка вытесняла из чашки воздух. Он поступал в манометр и поднимал в нем столбик воды. Высота его была пропорциональна давлению воды в жидкости.
Тот же изобретатель создал прибор, измеряющий давление жидкости на дно сосуда (рис. 3).

Для этого служила чашка с пленкой, соединенная со стрелкой, почти как в первом приборе. Только стрелка была значительно длиннее и снабжалась большой, хорошо заметной шкалой. К чашке крепили сменные стеклянные сосуды различной формы. Наливая в них воду до определенного — одного и того же — уровня и измеряя ее давление по отклонению стрелки, удавалось доказать, что давление зависит только от глубины сосуда и не зависит от его формы.
Известный изобретатель Отто фон Герике поставил некогда такой опыт. К крышке герметически закрытой бочки с водой он присоединил тонкую, но очень высокую трубку, а затем налил в нее воду. Давление в бочке повысилось, из всех щелей ее забили струи. Это явление принято называть гидростатическим парадоксом, а объясняется оно законом Паскаля. Дополнительное давление, создаваемое в трубке, пропорционально высоте водяного столба. Оно действует на воду, находящуюся в бочке, передается по всем направлениям и заставляет стенки бочки прогнуться. В них образуются щели, и через них бьет вода.
Гидростатический парадокс показывали и при помощи аппарата Сире (рис. 4).

Он состоял из цилиндрического стаканчика с водой, на который плотно, без зазора, надевался цилиндрический колпачок с тонкой высокой трубкой. Когда эту трубку заливали водой, колпачок начинал подниматься. К пояснению собственно закона Архимеда шли отдельными шагами.
Читать дальшеИнтервал:
Закладка: