Владимир Успенский - Апология математики, или О математике как части духовной культуры

Тут можно читать онлайн Владимир Успенский - Апология математики, или О математике как части духовной культуры - бесплатно полную версию книги (целиком) без сокращений. Жанр: Классическая проза. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Владимир Успенский - Апология математики, или О математике как части духовной культуры краткое содержание

Апология математики, или О математике как части духовной культуры - описание и краткое содержание, автор Владимир Успенский, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Успенский Владимир Андреевич — доктор физико-математических наук, профессор, заведующий кафедрой математической логики и теории алгоритмов механико-математического факультета МГУ им. М. В. Ломоносова. Родился в 1930 году. Автор филологических и культурологических статей, опубликованных в журналах «Новое литературное обозрение», «Неприкосновенный запас» и других изданиях. Постоянный автор «Нового мира».

Апология математики, или О математике как части духовной культуры - читать онлайн бесплатно полную версию (весь текст целиком)

Апология математики, или О математике как части духовной культуры - читать книгу онлайн бесплатно, автор Владимир Успенский
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Объясним теперь, почему задачам на построение было уделено здесь такое внимание. Причина в том, что на примере этих задач мы пытались продемонстрировать некоторые математические представления принципиального характера, представления, которые можно отнести к философии математики, а то и к философии вообще. Перечислим эти представления.

Во-первых, был ещё раз проиллюстрирован тезис, что задача, или проблема, всегда есть требование что-то найти, указать, построить.

Во-вторых, была показана необходимость уточнения того, в пределах какого класса объектов ищется решение задачи. Иногда этот класс состоит из объектов довольно простой (честнее было бы сказать: довольно привычной) природы — троек чисел в проблеме Ферма, отрезков в проблеме соизмеримости, но иногда он состоит из довольно-таки специальных объектов, подобно цепочкам операций в задачах на построение.

В-третьих, уточнение, о котором только что шла речь, особенно необходимо в случае, если задача оказывается нерешимой.

В-четвёртых, представление о разрешённой операции, в его общем виде, шире сферы задач на построение. Оно существенно и для компьютерной науки (Computer Science), и для компьютерной практики, а именно для программирования. Каждый компьютер имеет свой набор разрешённых операций, а каждая компьютерная программа есть некоторая цепочка операций, выбранных из этого набора.

Именно в силу своего философского аспекта задачи на построение должны занимать достойное место в школьном курсе геометрии. Мы не имеем в виду сложных задач, требующих зачастую большой изобретательности, — такие задачи должны изучаться в специализированных математических классах. Нет, мы имеем в виду самые простые задачи вроде задачи о построении правильного треугольника или задачи о нахождении середины отрезка.

Глава 6. Массовые задачи и алгоритмы

В который уже раз подчеркнем, что задача — это всегда требование что-то найти, построить, указать. В школе это «что-то» обычно называют ответом, а систему рассуждений, приводящую к ответу, — решением . Во «взрослой» математике ответ чаще всего тоже называют решением. Таким образом, термин «решение» приобретает два значения: ‘решение-ответ’ и ‘решение-процесс’ — причём первое есть результат второго. С точки зрения русской лексики ситуация здесь отнюдь не уникальна: например, печенье как изделие есть результат печения как действия по глаголу «печь». К путанице подобная полисемия, как правило, не приводит: из контекста всегда бывает ясно, что имеется в виду. Так что согласимся употреблять «взрослую» терминологию.

В замечательной одноактной пьесе «Урок» Эжена Ионеско есть такой диалог, который мы приведём с купюрами.

«Учитель. ‹…› Сколько будет, ну, скажем, если три миллиарда семьсот пятьдесят пять миллионов девятьсот девяносто восемь тысяч двести пятьдесят один умножить на пять миллиардов сто шестьдесят два миллиона триста три тысячи пятьсот восемь?

Ученица. Это будет девятнадцать квинтиллионов триста девяносто квадриллионов два триллиона восемьсот сорок четыре миллиарда двести девятнадцать миллионов сто шестьдесят четыре тысячи пятьсот восемь. ‹…›

Учитель (сосчитав в уме, с нарастающим изумлением). Да… Вы правы… ответ, действительно… (невнятно бормочет) квадриллионов… триллионов… миллиардов… миллионов… (разборчиво) сто шестьдесят четыре тысячи пятьсот восемь… (Ошеломленно.) Но каким образом вы это вычислили, если вам недоступны простейшие приемы арифметического мышления?

Ученица. Очень просто. Поскольку я не могу положиться на свое арифметическое мышление, я взяла и выучила наизусть все результаты умножения, какие только возможны».

Всех результатов умножения бесконечно много, так что выучить их наизусть невозможно. Да и не нужно: Ионеско справедливо утверждает, что «математика — заклятый враг зубрёжки». (Кстати, теоретическая невозможность выучить все результаты получила в приведённом диалоге и экспериментальное подтверждение. Дело в том, что Ученица дала неправильный ответ: правильным ответом является число 19 389 602 947 179 164 508, а ею названо число 19 390 002 844 219 164 508. Не берусь судить, получил ли этот факт должное отражение в ионесковедении.)

Но мы ведь умеем умножать. Это потому, что ещё в начальной школе нам сообщают некоторый общий способ умножения любых целых чисел, а именно способ умножения столбиком. Любой человек, овладевший этим способом, имеет право заявить, что теперь он готов умножить друг на друга любые два натуральных числа — и не потому, что он выучил все результаты (что, повторим, невозможно), а именно потому, что указанный способ позволяет найти требуемый результат для любой пары сомножителей.

На примере с умножением можно получить представление о понятии массовая задача . Массовая задача образуется путём совместного рассмотрения серии однотипных единичных задач. В случае умножения каждая единичная задача состоит в указании пары конкретных чисел (как, например, тех, которые были названы Ученице Учителем) и требовании найти их произведение. Это произведение является решением предложенной единичной задачи. Массовая же задача состоит здесь в требовании найти некий метод, позволяюший найти произведение для каждой отдельной пары чисел. Другой простой пример. Задача решить квадратное уравнение x 2— 13 x + 30 = 0 — это единичная задача, и её решением служит пара чисел 3 и 10. А вот изучаемая в средней школе задача о решении произвольного квадратного уравнения — это массовая задача, и её решением служит всем известная (или долженствующая быть всем известной) формула, дающая решение для любого конкретного квадратного уравнения. Остановим свой взгляд на какой-нибудь массовой задаче и посмотрим, чем отличаются друг от друга составляющие её единичные задачи. Мы видим, что они отличаются своими исходными данными . Для каждой единичной задачи умножения исходным данным служит конкретная пара чисел. А для каждой единичной задачи на решение квадратного уравнения исходное данное — это конкретное квадратное уравнение.

Решением же массовой задачи является общий метод, дающий для каждой из составляющих её единичных задач решение этой задачи. Если предложенный общий метод состоит в последовательности строго детерминированных операций, ведущих от исходного данного к результату, он называется конструктивным, или эффективным, или алгоритмическим, или, короче, алгоритмом . Таким образом, можно говорить об алгоритме сложения столбиком, об алгоритме умножения столбиком, об алгоритме решения квадратных уравнений и т. п. Алгоритмы играют в математике, да и во всей нашей жизни, большую роль — особенно в связи с развитием компьютерной технологии.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владимир Успенский читать все книги автора по порядку

Владимир Успенский - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Апология математики, или О математике как части духовной культуры отзывы


Отзывы читателей о книге Апология математики, или О математике как части духовной культуры, автор: Владимир Успенский. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x