Шон Кэрролл - Вечность. В поисках окончательной теории времени
- Название:Вечность. В поисках окончательной теории времени
- Автор:
- Жанр:
- Издательство:ООО «ЛитРес», www.litres.ru
- Год:101
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Шон Кэрролл - Вечность. В поисках окончательной теории времени краткое содержание
Вечность. В поисках окончательной теории времени - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Вернуться
223
Overbye, D . Lonely Hearts of the Cosmos. New York: HarperCollins, 1991. 109 p.
Вернуться
224
Для справки, планковская длина равна (Għ/c 3 ) 1/2, где G – гравитационная постоянная Ньютона, ħ – постоянная Планка из квантовой механики, а c – скорость света. (Мы приняли постоянную Больцмана равной единице.) Таким образом, энтропия может быть выражена как S = (c 3 /4ħG)A . Площадь горизонта событий связана с массой M черной дыры через равенство A = 8πG 2 M 2. Собрав все это вместе, находим, что энтропия выражается через массу следующим образом: S = (4πGc 3 /ħ)M 2.
Вернуться
225
Все частицы и античастицы – «частицы», если можно так выразиться. Иногда термин «частица» используют специально, для того чтобы подчеркнуть отличие частицы от античастицы, но чаще всего этим словом называют любые точечные элементарные объекты. Никто не подвергнет вас критике, если вы скажете, что позитрон – это частица, а электрон – его античастица.
Вернуться
226
Обратите внимание на это уточнение: «известной нам». Космологи допускают возможность того, что какой-то неизвестный процесс, возможно, в самом начале существования Вселенной, мог создать большое количество очень маленьких черных дыр, может быть, даже связанных с темной материей. Если эти черные дыры достаточно мелкие, они не могут быть такими уж черными; они должны испускать все больше и больше хокинговского излучения, а финальные взрывы должны быть достаточно заметными, чтобы мы могли обнаруживать их.
Вернуться
227
Существует интересная умозрительная идея о том, что мы могли бы создать черную дыру в ускорителе частиц, а затем наблюдать, как она распадается, испуская хокинговское излучение. При обычных обстоятельствах этот план был бы безнадежно нереалистичным; гравитация – невероятно слабое взаимодействие, и мы никогда не смогли бы построить достаточно мощный ускоритель частиц, чтобы сделать хотя бы микроскопическую черную дыру. Однако некоторые современные сценарии, включающие скрытые измерения пространства – времени, предполагают, что гравитация становится намного сильнее, чем обычно, на коротких расстояниях (см. Randall, L . Warped Passages: Unraveling the Mysteries of the Universe’s Hidden Dimensions. New York: HarperCollins, 2005). В этом случае перспектива создания и наблюдения маленькой черной дыры переходит из категории безумных в категорию еще умозрительных, но уже не совершенно безумных. Уверен, Хокинг надеется, что однажды это произойдет. К сожалению, за идею рождения микроскопических черных дыр ухватилась группа паникеров, распространяющих ужасающие предсказания, согласно которым Большой адронный коллайдер, новый ускоритель частиц в лаборатории института CERN в Женеве, неизбежно уничтожит мир. Даже если шансы такого исхода невелики, уничтожение мира – довольно неприятная штука, поэтому надо быть осторожнее, не так ли? Но тщательное исследование всех возможных вариантов развития событий ( Ellis, J., Giudice, G., Mangano, M. L., Tkachev, I., Wiedemann, U. Review of the Safety of LHC Collisions // Journal of Physics , 2008, G 35, 115004) показало, что БАК не в состоянии сделать ничего такого, что бы уже не происходило множество раз в разных уголках Вселенной; если катастрофа и планируется, то мы должны видеть признаки этого в других астрофизических объектах. Конечно же, всегда есть вероятность того, что все люди, участвующие в этих исследованиях, делают непреднамеренные математические ошибки того или иного сорта. Но возможно всякое. Не исключено, что в следующий раз, открыв банку томатной пасты, вы выпустите на волю мутировавший патогенный микроорганизм, который сотрет жизнь с лица Земли. Не исключено, что за нами наблюдает оценивающим взором раса суперразвитых инопланетных существ, способных разозлиться и разрушить Землю в наказание за то, что мы смирились с необоснованными судебными исками и не включаем БАК. Когда вероятности становятся такими крошечными, как те, о которых мы сейчас ведем речь, можно решиться на рисковый шаг и взять на себя ответственность за собственные жизни.
Вернуться
228
Идея глубже копнуть в этом направлении может показаться довольно многообещающей – возможно, информация копируется и поэтому одновременно содержится и в книге, падающей в сингулярность, и в излучении, покидающем черную дыру? Однако в квантовой механике был получен результат (известный под названием теоремы о запрете клонирования), согласно которому этого не может быть. Информация не только не уничтожается, она также не может дублироваться.
Вернуться
229
Прескилл рассказывает историю заключенных им пари на своем веб-сайте: http://www.theory.caltech.edu/people/preskill/bets.html. Более глубокое объяснение парадокса о потере информации в черных дырах вы найдете в работе Susskind, L . The Black Hole War: My Battle with Stephen Hawking to Make the World Safe for Quantum Mechanics. New York: Little, Brown, 2008.
Вернуться
230
Возможно, вы подумали, что это ограничение можно обойти, снова призвав на помощь фотоны, ведь фотоны – это частицы с нулевой массой. Однако у фотона есть энергия, и энергия его тем больше, чем меньше его длина волны. Поскольку мы имеем дело с контейнером определенного фиксированного размера, у каждого содержащегося там фотона есть минимальная допустимая энергия; в противном случае он просто не сможет находиться внутри. А энергия всех фотонов посредством чуда E = mc 2вносит свой вклад в массу контейнера. (Ни один фотон не обладает массой, но у контейнера с фотонами масса есть, и она определяется как сумма энергий всех фотонов, деленная на квадрат скорости света.)
Вернуться
231
Площадь поверхности сферы равна произведению 4π на квадрат ее радиуса. Площадь горизонта событий черной дыры вполне предсказуемо равна произведению 4π на квадрат радиуса Шварцшильда. В действительности это и есть определение радиуса Шварцшильда, так как сильно искривленное пространство – время внутри черной дыры не позволяет дать разумное определение расстояния от сингулярности до горизонта (вспомните, это расстояние во времени!). Таким образом, площадь горизонта событий пропорциональна квадрату массы черной дыры. Все это относится к черным дырам с нулевым угловым моментом и отсутствием электрического заряда; если дыра вращается или заряжена, формулы становятся немного сложнее.
Вернуться
232
Голографический принцип обсуждается в книге Susskind, L. The Black Hole War: My Battle with Stephen Hawking to Make the World Safe for Quantum Mechanics. New York: Little, Brown, 2008; технические детали вы найдете в работе Bousso, R . The Holographic Principle // Reviews of Modern Physics , 2002, 74, p. 825–874.
Вернуться
233
Maldacena, J. M. The Large N Limit of Superconformal Field Theories and Supergravity // Advances in Theoretical and Mathematical Physics , 1998, 2, p. 231–252. Название статьи Малдасены «Предел большого N в теориях суперконформного поля и супергравитации» не передает и доли восторга, порождаемого этим результатом. Когда Хуан в 1997 году приехал в Санта-Барбару для проведения семинара, я остался в офисе и продолжал работать, совершенно не заинтригованный названием. Если бы доклад был озаглавлен «Эквивалентность пятимерной теории с гравитацией и четырехмерной теории без гравитации», я бы, вероятно, нашел время, чтобы посетить семинар. Позднее стало понятно, что я пропустил нечто совершенно грандиозное – такие оживленные разговоры звучали после доклада в коридорах, так взволнованно, словно в исступлении, орудовали мелом ученые, покрывая формулами доски.
Читать дальшеИнтервал:
Закладка: