Шамиль Султанов - Омар Хайям
- Название:Омар Хайям
- Автор:
- Жанр:
- Издательство:Молодая гвардия
- Год:1987
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Шамиль Султанов - Омар Хайям краткое содержание
Книга о великом поэте и мыслителе Востока. Его стихи, переведенные на многие языки, пользуются всемирной славой. Омар Хайям известен также как математик и философ. Основанная на привлечении множества малоизученных материалов, книга — первое на русском языке подробное жизнеописание Хайяма — включает также широкую характеристику исторической обстановки и духовной жизни мусульманского Востока в XI—XII веках.
Омар Хайям - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Математическое творчество Хайяма явилось продолжением как работ классиков греческой и эллинистической науки — Аристотеля, Евклида, Аполлония, так и выдающихся предшественников в странах ислама.
Начиная со второй половины IX века математики стран ислама включают в круг своих занятий кубические уравнения. Этим занимались аль-Махами, Ибн аль-Хайсан, аль-Кухи, аль-Бируни. Таким образом, важной задачей становилась разработка общей теории уравнений третьей Степени.
Мы знаем о трех математических работах Омара Хайяма, относящихся к периоду его пребывания в Мавераннахре. Одна из них — «Трудности арифметики» — до сих пор не найдена. Об этой работе Хайям упоминает в своем алгебраическом трактате: «У индийцев имеются методы нахождения сторон квадратов и ребер кубов, основанные на небольшом последовательном подборе и на знании квадратов девяти цифр, то есть квадрата одного, двух, трех и т. д., а также произведений двух на три (и т. д.). Нам принадлежит трактат о доказательстве правильности этих методов и того, что они действительно приводят к цели. Кроме того, мы увеличили число видов, то есть мы показали, как определять основания квадрато-квадратов, квадрато-кубов и так далее сколько угодно, чего раньше не было». По мнению советских исследователей Б.А. Розенфельда и А.П. Юшкевича, в этой работе Омар Хайям первым в истории математики предложил общий прием извлечения корней n-й степени из чисел, основанный, вероятно, на знании формулы n-й степени двучлена.
Второй трактат — небольшой и не имеет заглавия. В начале его сказано только: «Этот трактат — Абу-ль-Фатха Омара ибн Ибрахима аль-Хайями». Омар приводит здесь классификацию из 25 видов линейных, квадратных и кубических уравнений. Причем указывает, что 11 из этих 25 видов могут быть решены при помощи 2-й книги «Начал» Евклида, а остальные 14 — только при помощи конических сечений или специальных инструментов. Хайяму известны решения только четырех из них, принадлежащие его предшественникам. В своей небольшой работе Хайям критикует «тех, кто хвастлив, тщеславен и бессилен», чьи «души не вмещают ничего, кроме разве лишь понимания чего-нибудь незначительного из наук. Однако, когда они постигают это, им кажется, что это количество и есть то, что заключают в себе науки и что составляет их».
Я знаю этот вид напыщенных ослов:
Пусты как барабан, а сколько громких слов!
Они — рабы имен. Составь себе лишь имя,
И ползать пред тобой любой из них готов.
В конце трактата говорится: «Если бы не благородство собрания, да будет это благородство вечным, и не достоинство спрашивающего, да сделает Аллах вечной свою поддержку ему, я был бы в большом отдалении от этого, так как мое внимание ограничено тем, что для меня важнее этих примеров и на что расходуются все мои силы». Полемический тон этих высказываний достаточно очевиден. Вероятно, даже занимаясь математикой, Омар Хайям отнюдь не представлял замкнутого в себе, отрешенного от мира ученого. Судя по всему, уже в тот период исследования молодого ученого в области алгебры приводили к дискуссиям по более широкому кругу вопросов.
В этом же трактате Хайям писал: «Если мне будет отпущено время и будет сопутствовать успех, то я изложу эти четырнадцать видов со всеми их разновидностями и их частными случаями и различу среди них возможные от невозможных: некоторые из этих видов нуждаются в некоторых условиях, так что правильный трактат должен охватывать многие предпосылки, приносящие большую пользу в началах этого искусства».
Таким «правильным трактатом» стал знаменитый «Трактат о доказательствах задач алгебры и алмукабалы». Эту алгебраическую работу Хайяма можно разбить на пять частей: введение; решение уравнений первой и второй степени; решение уравнений третьей степени; сведение к предыдущим видам уравнений, содержащих величину, обратную неизвестной, и дополнение.
Работа Омара Хайяма стала возможной в результате его глубокого и систематического изучения предшествующего этапа развития этой отрасли математики. Он ищет и ставит те сложные проблемы, которые, по его мнению, не были разрешены наукой до него, что подтверждают его собственные высказывания: «Один из поучительных вопросов, необходимый в разделе философии, называемом математикой, это искусство алгебры и алмукабалы, имеющее своей целью определение неизвестных, как числовых, так и измеримых».
Здесь, вероятно, следует напомнить, что и в средние века математика считалась одним из разделов философии. Философские науки делились на теоретические и практические. Теоретические же, в свою очередь, подразделялись на «высшую науку» (то есть философию в нынешнем смысле), «среднюю науку» — математику и «низшую науку» — физику. В данном случае Хайям называет «измеримой величиной» непрерывную геометрическую величину, то есть линию, поверхность и тело в отличие от дискретного количества — натурального числа.
Далее он пишет: «В нем (то есть в этом искусстве алгебры. — Авт. ) встречается необходимость в некоторых очень сложных видах предложений, в решении которых потерпело неудачу большинство этим занимавшихся. Что касается древних, то до нас не дошло сочинение, в котором они рассматривали бы этот вопрос, может быть, они искали решение и изучали этот вопрос, но не смогли преодолеть трудностей, или их исследования не требовали рассмотрения этого вопроса, или, наконец, их труды по этому вопросу не были переведены на наш язык. [7] Имеется в виду арабский язык, игравший роль международного средства общения в странах ислама в средние века.
Я же, напротив, всегда горячо стремился к тому, чтобы исследовать все эти виды и различить среди этих видов возможные и невозможные случаи, основываясь на доказательствах, так как я знал, насколько настоятельна необходимость в них в трудностях задач».
В другом месте трактата Хайям возвращается к этой же мысли, подчеркивая преемственность своей работы от исследований Евклида и Аполлона: «Следует знать, что этот трактат может быть понят только теми, кто хорошо знает книги Евклида „Начала“ и „Данные“, так же как две книги сочинения Аполлония [8] Аполлоний — великий греческий математик (около 260—170 гг. до н.э.), работал в Александрии и Лергане.
«Конические сечения».
Во введении Хайям пишет: «Я утверждаю, что искусство алгебры и алмукабалы есть научное искусство, предмет которого составляют абсолютное число и измеримые величины, являющиеся неизвестными…, но отмеченные в какой-нибудь известной вещи, по которой их можно определить. Эта вещь есть или количество, или отношение…» Таким образом, предмет алгебры — это неизвестная величина, дискретная (ибо «абсолютное число» означает число натуральное) или же непрерывная (измеримыми величинами Хайям называет линии, поверхности, тела и время). «Отнесение» неизвестных величин к известным есть составление уравнения.
Читать дальшеИнтервал:
Закладка: