Нурали Латыпов - Бигуди для извилин. Возьми от мозга все!
- Название:Бигуди для извилин. Возьми от мозга все!
- Автор:
- Жанр:
- Издательство:АСТ
- Год:2014
- Город:Москва
- ISBN:978-5-17-087281-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Нурали Латыпов - Бигуди для извилин. Возьми от мозга все! краткое содержание
Бигуди для извилин. Возьми от мозга все! - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
А при надлежащей внимательности к условию (хорошо ориентируйтесь в «пространстве проблемы»!) легко находится ответ и для такой шутливой и, на первый взгляд, бессмысленной задачи. Вы капитан корабля, идущего в Cингапур (Либерию, Марокко….) с грузом… (следует долгое перечисление характера и количества груза). Помимо груза, на корабле в качестве пассажиров находятся… (следует список пассажиров с указанием их возраста, веса, пола и т. д.). В конце концов условие заканчивается вопросом: сколько лет (или какой цвет волос, или глаз или ещё что-либо) капитану?
Абсурдность вопроса кажущаяся: внимательный анализ сразу же показывает — смысл вопроса определяется лишь первой фразой условия! Нестандартная, неожиданная постановка задачи требует и нестандартного же решения. «Проникновенный» анализ проблемы показывает несвязанность между собой всех её данных, так что не запутается в них только нешаблонное мышление.

Бигуди № 42
Опишем фокус, проведенный в домашних условиях школьником, неплохо знающим физику. Он написал на листке печатными буквами слова «КОФЕ» и «ЧАЙ», наполнил водой пробирку и предложил родителям сквозь неё посмотреть на каждое из этих слов. Одно из слов осталось неизменным, а второе — перевернулось. В чём здесь дело? Как только станет ясно, при чём тут пробирка с водой, Вы сразу сообразите, какое слово не изменилось. Или наоборот — проще сначала понять, почему не меняется слово, а потом уж разберемся с пробиркой? В общем, немного физики, немного симметрии… Будьте внимательны! Кстати, можно ли обнаружить тот же эффект, глядя на эти слова через, например, аквариум — параллелепипед? 56
Свести задачу к предыдущей
Один из важнейших, на мой взгляд, принципов, работающий практически в любой сложной задаче — «принцип сведения». Речь идёт всего лишь о том, чтобы упростить сложную и запутанную задачу, свести её к некоторой другой, намного более простой задаче (в математике этот метод известен под названием метода рекурсии — «возвращения»). Вспомним: М.А. Розов определял новое знание как нечто неизвестное, сведенное к чему-то ранее известному. Словом, голова удава, укусив за кончик собственного хвоста, может обнаружить ответ там, где «весь опыт».
Заметьте — для работы этого принципа нам, возможно, понадобится использовать и прочие вышеописанные принципы действий в «пространстве проблемы».
Принцип сведения легко понять с точки зрения действий мозга: ему проще работать в ситуации, когда информации меньше. Если мы упрощаем условие, закапываем овраги и срываем холмы в «пространстве проблемы» — путь к решению становится хорошо виден! Кстати, если при решении сложной задачи Вам вспоминается похожая задача, но с уже известным решением, значит, Вы уже свели Вашу задачу к более простой [115] Впрочем, иной раз старая задача оказывается сложнее новой — например, потому, что со времён её решения мы обогатились искусством и познанием. Вспоминается старый анекдот о разнице математического и физического мышления. Перед вами чайник, водопроводный кран, газовая плита и спички. Надо вскипятить воду. Естественно, вы наполняете чайник, разжигаете плиту, ставите чайник на неё и ждёте, пока он закипит. Теперь предположим, что чайник уже наполнен и газ горит. Физик поставит чайник на плиту и будет ждать. Математик погасит плиту, выльет воду и тем самым сведёт задачу к предыдущей.
! Этот принцип близок к известному среди изобретателей «принципу матрёшки»: решив «внешнюю» задачу, переходим к решению подобной, но уже «внутренней», более простой.
Правда, есть и пределы упрощения. Если «переборщить» — получим совсем другую задачу. И тогда даже после её решения придётся всё равно проникать в суть дела.
Упрощение, разбиение большой проблемы на ряд относительно простых подзадач («принцип снеговика») задаёт новые направления движения в «пространстве проблемы». Эти направления особенно нужны, когдa первичный анализ показывает: мы в тупике! Нужен отчаянный скачок! Нужны упрощающие предположения! Нужны подсказки! Откуда же им взяться? Если надеяться не на кого, будем думать сами. Будем искать какие-то странные, удивительные, неожиданные особенности, проявляющиеся в самой задаче.
Принцип сведения к известному в естествознании восходит ещё к Аристотелю: он объяснял падение тел «понятным» желанием всех тел стремиться к центру Вселенной (по тогдашним представлениям — к центру Земли). В XIX веке Джеймс Клерк Максвелл пытался объяснять свои уравнения электромагнитного поля, сводя его к «понятным» шестерёнкам, заполняющим всё пространство «понятного» упругого эфира. Майкл Фарадей был убеждён, что силовые линии электрического или магнитного полей — «понятные» реальные упругие струны. Исааку Ньютону была совершенно понятна корпускулярная природа света. И это его убеждение в простоте и понятности такой механистической картины, затормозило развитие волновой оптики почти на два века! Вот так — действительно, перебарщивать в упрощении опасно.

Бигуди № 43
Когда в Париже появилась знаменитая впоследствии башня инженера Эйфеля, у нее было много противников. Ги де Мопассан был одним из наиболее известных её критиков (среди них были также известный композитор Шарль Гуно, Александр Дюма-сын и многие представители интеллигенции): он считал, что Эйфелева башня — бесполезная и чудовищная конструкция, оскорбляющая вид любимого города. Если во время прогулки взгляд писателя случайно падал на ажурные очертания башни, которую его друзья сравнивали с гигантской фабричной дымовой трубой, настроение его немедленно портилось. Поэтому он всё время искал место, откуда не мог бы видеть это невыносимое сооружение. Где найти такое место в Париже, не слишком удаляясь от красивейшего района Парижа — Марсова поля, где и установлена башня? Задачу знаменитый писатель решил просто — он нашёл, как сам выражался, «… единственное место во всём огромном Париже, откуда её не видно». Там он регулярно обедал. Где же это место? Как называется оно теперь (это уже вопрос на эрудицию)? Не кажется ли Вам, что Мопассан действовал, может быть и неосознанно, но в полном соответствии с «принципом матрёшки»? 57
Подключение переменных
Понятно, что в условии задачи много различных неизвестных, переменных величин (какие-нибудь X, Y, Z….). Сложность задачи в том и проявляется, что: а) этих неизвестных слишком много; б) непонятно, независимы ли они или как-то связаны между собой; в) что происходит, когда они меняют свои значения; г) в каких пределах они могут меняться.
Читать дальшеИнтервал:
Закладка: