Коллектив авторов - Большая энциклопедия техники
- Название:Большая энциклопедия техники
- Автор:
- Жанр:
- Издательство:Array Литагент «Научная книга»
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - Большая энциклопедия техники краткое содержание
Большая энциклопедия техники - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Модификация двигателя внешнего сгорания – это многоцилиндровый двигатель с одним только поршнем в каждом цилиндре. Этот поршень выполняет расширение, сжатие, вытеснение газа. Рабочий цикл этого двигателя выполняется за один оборот кривошипа. Этот двигатель имеет меньшую массу и габариты. Двигатели внешнего сгорания способны работать на различном топливе, даже ядерном, его сжигание происходит в форсунках, и пламя идет в трубы нагревателя. Продукты сгорания топлива двигателей внешнего сгорания содержат намного меньше токсичных примесей, чем продукты сгорания поршневых двигателей внутреннего сгорания. Поэтому «двигатели Стирлинга» очень экологически выгодны, а также надежны в эксплуатации и экономичны по расходу топлива. Но их существенные недостатки – это большая стоимость, масса, размеры, трудность в управлении и регулировке, сложность конструкции. Современные двигатели внешнего сгорания используются на грузовых автомобилях и судах. Дальнейшее использование таких двигателей перспективно и направлено на снижение габаритов, массы, стоимости, использование рациональных способов их изготовления из жаростойких материалов, увеличение их мощности и производительности.
Тепловая труба
Тепловая труба – устройство, передающее большие мощности тепла. Труба герметизирована, ее наполняет жидкий теплоноситель. Нагреваемая часть трубы – это зона нагрева и испарения жидкого теплоносителя. Охлаждаемая часть трубы – это зона охлаждения и конденсации пара, который приходит из зоны испарения и конденсируется. В зонах испарения и конденсации разная температура, она определяет и разное давление в зонах, что способствует движению пара из зоны испарения в зону конденсации. Внутри тепловой трубы находится капиллярная структура, по ней жидкость возвращается в зону испарения, чему способствует капиллярная разница давлений. Также жидкость может вернуться с помощью силы тяжести или других наружных воздействий. Тепловые трубы, имеющие капиллярную структуру, не зависят от ориентации в поле тяжести, и их используют в условиях невесомости. Отношение плотности тепла, проходящего через тепловую трубу, к снижению температуры на единицу длины тепловой трубы – это эффективная теплопроводность. Она очень высока и доходит до 100 000 000 вт/(м × К), что в десятки тысяч раз больше, чем теплопроводность многих теплопроводящих элементов. Такая высокая теплопроводность тепловых труб и большая надежность в эксплуатации, небольшой вес способствуют очень широкому распространению тепловых труб в различных областях техники и производства – электроники, космической техники, химической промышленности, энергетики.
Тепловой насос
Тепловой насос – устройство, переносящее тепловую энергию теплоотдатчика к теплоприемнику. Теплоотдатчик имеет низкую температуру, теплоприемник имеет высокую температуру. В работе тепловой насос использует внешнюю энергию – электрическую, химическую или механическую. Рабочее тело теплового насоса – жидкость, имеющая низкую температуру кипения (аммиак, фреон).
Тепловой насос имеет большой коэффициент преобразования энергии, так как его теплоприемник принимает тепло еще и от теплоотдатчика, кроме тепла совершаемой работы. Такое преобразование эффективнее по сравнению с прямым превращением механической, химической или электрической энергии в тепло. Но тепловой насос не обладает способностью вырабатывать теплоту и электрическую энергию совместно, что не очень удовлетворяет условиям энергетики. Это снижает возможности применения тепловых насосов. Но при определенных обстоятельствах он эффективен (например, если объект, потребляющий энергию, расположен далеко от ТЭЦ, или в жарком климате для попеременного отопления в холодное время и охлаждения в теплое время года). Применяется в горных районах, где много ГЭС и дешева электрическая энергия.
Тепловой реактор
Тепловой реактор – ядерный реактор, в котором ядра вещества при делении взаимодействуют с тепловыми нейтронами. Тепловые нейтроны образуются при замедлении нейтронов. В активной зоне теплового реактора находится замедлитель – специальное вещество с легкими ядрами, слабо поглощающими нейтроны, это вещество замедляет нейтроны до тепловой энергии. Замедлитель – как правило, это углеводороды, углерод, тяжелая вода, водород, дейтерий, бериллий, окись бериллия, обычная вода, графит. Тепловой реактор работает на ядерном топливе, которым являются изотопы урана и плутония, имеющие большие сечения для захвата нейтронов с малой энергией, это позволяет загружать небольшое количество делящегося вещества. Для использования в качестве топлива природного урана его обогащают изотопом. На поддержание ядерной реакции употребляется, как правило, один нейтрон, остальные не взаимодействуют с ураном – сырьевым материалом, при этом получается вторичное ядерное топливо – плутоний. Свойства замедлителя и количество сырьевого материала определяют, сколько нейтронов будут с ним взаимодействовать. В тепловом реакторе, в котором топливо – уран, сырьевой материал – торий, количество взаимодействующих нейтронов больше количества разделившихся ядер, что позволяет воспроизводить ядерное топливо. Усиление или ослабление процесса деления выполняет регулирующий стержень реактора – это вещество с хорошим поглощением нейтронов (кадмий, редкоземельные элементы, бор или соединения бора – бористая сталь, карбид бора). Изменение концентрации бора, борной кислоты в теплоносителе также регулирует работу теплового реактора. Отношение числа поглощенных в реакторе нейтронов данного и предыдущего поколения называется эффективным коэффициентом размножения. Это основная рабочая характеристика состояния теплового реактора. Газы и жидкости со слабым поглощением нейтронов применяются как теплоносители, отводящие тепло из реактора. Как правило, это гелий, двуокись углерода, органические жидкости, вода обычная или тяжелая, эти вещества эффективно осуществляют теплообмен. Иногда используются и жидкие металлы или соли. Вода в тепловом реакторе, как правило, является и теплоносителем, и замедлителем. Конструкции активной зоны реактора изготовляются из алюминия и циркония, не влияющих на скорость поглощения нейтронов. Современные тепловые реакторы – это наиболее распространенный, основной вид ядерного реактора, имеющий очень широкое распространение в различных отраслях науки и техники. С помощью тепловых реакторов получают электрическую энергию, радиоактивные изотопы, искусственно делящиеся вещества. Тепловые реакторы применяются также для опреснения морской воды, в научных целях при изучении физических процессов или испытаний различных конструкций.
Читать дальшеИнтервал:
Закладка: