Коллектив авторов - Большая энциклопедия техники
- Название:Большая энциклопедия техники
- Автор:
- Жанр:
- Издательство:Array Литагент «Научная книга»
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - Большая энциклопедия техники краткое содержание
Большая энциклопедия техники - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Тяжеловодный реактор – тепловой реактор, использующий в качестве замедлителя тяжелую воду, имеющую небольшое сечение поглощения нейтронов. Тяжеловодный реактор способен воспроизводить большое количество ядерного топлива. Теплоносителем в тяжеловодных реакторах, как правило, являются тяжелая вода и также газы – двуокись углерода, водяной пар. Тяжелая вода имеет высокую стоимость из-за сложности ее получения. Поэтому эксплуатация тяжеловодного реактора эффективна при недорогом воспроизводстве тяжелой воды.
Факельная топка
Факельная топка – устройство, сжигающее топливо в факелах. Топливо – угольная пыль, газ или мазут. Факельная топка представляет собой камеру, в которой располагаются горелки для сжигания распыленного топлива. Расположение горелок определяет характер факела. Если горелки расположены на поду или под сводом камеры, то факел не поворачивается. Если горелки расположены горизонтально, то факел может поворачиваться на 90° или 180°. В центре горения температура факела около 2000 °С. На выходе из топки она снижается до 1000 °С. Чтобы предохранить стены топки от слишком интенсивного излучения тепла, их покрывают отражательными экранами. Экраны сделаны из охлаждаемых водой труб или из плавниковых труб. Трубы сварены друг с другом. В первых факельных топках поверхность стен делали из огнеупорных кирпичей. Сейчас это легкая изоляция, расположенная на экранных трубах.
Форсунка
Форсунка – устройство, распыляющее жидкости. Форсунки различаются по характеру распыления и бывают центробежными, вихревыми, струйными, штифтовыми, вращательными, газовыми.
Вещество (жидкость, газ) из форсунки подается или непрерывно, или периодически. Периодическая подача применяется в дизелях. Непрерывная подача используется в газотурбинных, реактивных двигателях, топках. Распыляемое топливо подается под давлением (или сжатым паром, или газом).
В вихревых, центробежных и вращательных распыляемое вещество совершает вращательное движение и выходит как тонкая пленка. В вихревых форсунках распыляемая жидкость приобретает вращательное движение, двигаясь по винтовым каналам. В центробежных форсунках распыляемая жидкость подводится по каналу по касательной относительно камеры и тем самым получает вращательное движение. Во вращательных форсунках сам корпус форсунки совершает вращение и передает его распыляемому веществу. В струйных форсунках жидкость идет через сопла, имеющие цилиндрическую форму. В штифтовых форсунках жидкость подается через плоские и кольцевые щели. Форсунки сообщают потоку распыляемого вещества скорости, при которых жидкость дробится на мелкие капли. В газовых форсунках вместе с жидкостью распыляется и выходит газ. Из вращательных форсунок жидкость выходит с наибольшим углом наклона (около 180°), у струйных угол наклона наименьший (не более 20°). Некоторые форсунки снабжены клапаном, регулирующим количество, начало и конец подачи вещества. Движение клапана совершается под давлением потока жидкости при помощи устройств или же вручную. Форсунки имеют очень широкое распространение в различных областях техники. С их помощью регулируют горение, увлажняют почву или воздух, распыляют растворы удобрений или химикатов.
Хемоядерный реактор
Хемоядерный реактор – ядерный реактор, в котором осуществляются радиационно-химические процессы.
В хемоядерном реакторе с помощью энергии делящихся тяжелых ядер гамма-излучения и нейтронного излучения происходят реакции молекул вещества и ионизация.
Устройство хемоядерных реакторов различается по характеру осуществляемых в нем реакций.
Если реакция идет за счет энергии осколков тяжелых ядер, то происходит омывание реагентом развитой поверхности ядерного топлива.
Если реакция идет с помощью гамма-излучения и нейтронного излучения одновременно, то вещество, подлежащее облучению, помещают в камеру, которую устанавливают в активной зоне.
Если реакция идет только при помощи гамма-излучения, то реакции проводят не в активной зоне, а в радиационном контуре.
Но если радиационно-химические реакции протекают в активной зоне реактора, то продукты этой реакции получают сильное радиоактивное загрязнение, поэтому эти реакторы неэффективны в промышленном применении. Предпочтительнее проведение реакции в радиационном контуре, так как при этом не происходит загрязнение продуктов реакции радиоактивностью.
Хладоноситель
Хладагент (холодильный агент) – рабочее вещество, работающее в холодильной машине, отводящее тепло от охлаждаемого объекта в процессе кипения или расширения, отдающее его в окружающую среду в результате сжатия. Основные рабочие свойства хладоносителей – низкая температура кипения, низкая температура конденсации, низкая температура затвердевания, невысокое давление, высокая теплота парообразования, высокая теплопроводность, малый удельный объем, небольшая теплоемкость. Хладоносители (хладагенты) разделяются на три группы, что зависит от их температуры кипения:
1) хладагенты высокотемпературные, с температурой кипения более 10 °С;
2) хладагенты среднетемпературные, с температурой кипения меньше 10 °С;
3) хладагенты низкотемпературные, с температурой кипения 50 °С.
Самые распространенные хладоносители (хладагенты) – это фреоны, аммиак, углеводороды. Аммиак – среднетемпературный хладагент, имеющий высокие теплофизические свойства и низкую стоимость, но он обладает взрывоопасностью и токсичностью. Фреоны – негорючие хладагенты, используемые во всех температурных группах. Углеводороды (этилен, пропан, этан) – низкотемпературные хладагенты, но они обладают взрывоопасностью. Углеводороды в качестве хладоносителей используются в газовой и нефтяной промышленности, для работы в больших холодильных установках. Хладоносителем может быть и обычная вода. Такой хладоноситель используется в абсорбционных холодильных машинах, которые работают на водном растворе бромистого лития. Газы тоже могут быть хладоносителями. Это водород, азот, гелий, воздух. Они работают в холодильно-газовых машинах.
Холодильная машина
Холодильная машина – машина, отводящая тепло от охлаждаемого объекта с помощью низких температур (от 10 до 50 °С). Принцип работы холодильной машины – это тепловой насос. Он состоит в заборе тепла у охлаждаемого тела и передаче его окружающей среде (например, воздуху или воде, которые обладают температурой более высокой, чем охлаждаемое тело). Основная характеристика холодильной машины – это холодопроизводительность, которая может составлять от нескольких сотен ватт до нескольких мегаватт.
Читать дальшеИнтервал:
Закладка: