Коллектив авторов - Большая энциклопедия техники

Тут можно читать онлайн Коллектив авторов - Большая энциклопедия техники - бесплатно ознакомительный отрывок. Жанр: Энциклопедии, издательство Array Литагент «Научная книга». Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Большая энциклопедия техники
  • Автор:
  • Жанр:
  • Издательство:
    Array Литагент «Научная книга»
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Коллектив авторов - Большая энциклопедия техники краткое содержание

Большая энциклопедия техники - описание и краткое содержание, автор Коллектив авторов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
«Энциклопедия техники» – необычная, познавательная и удобная в использовании книга. Издание содержит около 2000 всевозможных технических терминов, понятий и обозначений из различных областей науки, хозяйства и производства. Здесь можно найти все – от описания миксера и другой бытовой техники до статей о тяжелой артиллерии, грейдера, ядерного реактора и медицинского аппарата УЗИ. Книга будет представлять интерес не только для специалистов в данных областях, техников и инженеров, но и для каждого любознательного и разносторонне развитого человека.

Большая энциклопедия техники - читать онлайн бесплатно ознакомительный отрывок

Большая энциклопедия техники - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Коллектив авторов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Конструкции и характеристики.Сверхвысоковакуумный агрегат состоит из испарительного геттерного насоса, азотной ловушки и паромасляного диффузионного насоса. В испарительном геттерном насосе титан конденсируется на внутренней стенке цилиндрического экрана, охлаждаемой жидким азотом, подаваемым из сосуда Дьюара. Испаритель титана содержит запас титановой проволоки и механизм для ее периодической подачи в водоохлаждаемый медный тигель – анод. Испарение титана происходит путем разогрева титановой проволоки электронной бомбардировкой с помощью имеющейся в испарителе электронной пушки. Такой способ нагрева обеспечивает значительную скорость испарения титана при минимальном тепловом излучении, что определяет сравнительно небольшой расход азота (приблизительно 5 л/ч). Небольшой экран, установленный вблизи испарителя, практически исключает попадание титана в откачиваемый сосуд. Предельное остаточное давление агрегата составляет 10 -10Па, быстрота действия по водороду в диапазоне давлений 10 -4—10 -8Па в 2,8 раза больше, чем по азоту. Такая разница в быстроте действия по этим гаммам объясняется, главным образом, более высокой проходимостью входного патрубка насоса по водороду.

В некоторых вакуумных установках (для исследования термоядерных реакций, имитации космических условий и т. п.) титан конденсируется на охлаждаемые жидким азотом экраны, установленные непосредственно внутри сосуда, причем рабочая зона сосуда экранирована от попадания паров титана. Такое устройство получило название азотит. При этом достигаются высокая быстрота действия (до сотен тысяч л/с) и предельное остаточное давление до 10 10—10 -11Па.

10. Электродуговые геттерные насосы.Испарение геттера в электродуговых геттерных насосах происходит с поверхности титанового катода за счет высокой концентрации энергии в катодном пятне электрической дуги постоянного тока. Плотность тока в катодном пятне достигает 10 10—11 11А/м 2. Катодное пятно хаотически перемещается по поверхности титана, благодаря чему обеспечивается равномерное испарение материала катода. Благодаря тому, что дуга горит в парах испаряющегося металла, создаются условия для ее стабильного горения при сколь угодно низком давлении остаточных газов.

Конструкции и характеристики.В корпусе, являющемся анодом системы, помещен катод с поджигающим устройством, собранный на общем фланце. Катод представляет собой титановый диск, который крепится титановыми шпильками к медному основанию, охлаждаемому водой. Боковые поверхности основания, титанового диска и электрического ввода закрыты металлическим экраном, предотвращающим возникновение дуги между поверхностями этих деталей и корпусом насоса – анода. В экране предусмотрен вырез для подвода поджигающего электрода. Поджигающий электрод через балластное сопротивление, ограничивающее ток короткого замыкания, соединен с корпусом насоса.

Питание дуги осуществляется от источника постоянного тока. Возбуждение дуги производится кратковременным закорачиванием катода с поджигающим электродом. Для этого подают напряжение на электромагнит, который подводит электрод к катоду. В момент отвода электрода возвратной пружиной между катодом и анодом – корпусом насоса возникает устойчивая электрическая дуга. Напряжение поджига дуги лежит в пределах 25—35 В, а ток стабильного горения дуги составляет примерно 140 А при напряжении 20—21 В. Скорость испарения титана при этом достигает 15—17 г/ч. Для уменьшения скорости испарения титана с целью более рационального его расходования применяют периодический режим работы насоса. Причем чем ниже давление в откачиваемом сосуде, тем больше делают паузу между моментами включения насоса. При испарении титана на стенках насоса непрерывно образуется свежая активная пленка, на поверхности которой и происходит поглощение активных газов. Для откачки инертных газов к нижнему фланцу насоса через водоохлаждаемую ловушку присоединяется дополнительный паромасляный диффузионный насос, быстрота действия которого должна составлять 2—5% быстроты действия электродугового геттерного насоса.

Верхним фланцем, в сечении которого установлен отражательный экран, насос подсоединяется к откачиваемому сосуду. Экран предусмотрен для предотвращения попадания испаряющегося титана во внутреннюю полость откачиваемого сосуда. Быстрота действия геттерных электродуговых насосов может достигать 10 4—10 5л/с. Предельное остаточное давление насоса составляет 10 -5Па при откачке инертных газов дополнительным насосом и 10 -4Па без такой откачки дополнительным насосом.

Электродуговые геттерные насосы используют простые источники питания, снабжены большим количеством геттерного материала и просты по устройству.

11. Ионно-геттерные насосы.Геттерные насосы малоэффективны при откачке инертных газов и для получения низких предельных остаточных давлений (менее 10 -4Па) требуют применения дополнительных насосов. В то же время при возбуждении и ионизации откачиваемых газов электронным потоком или в электрическом разряде поглощение титановой пленкой идет более интенсивно, причем благодаря ионизации откачиваются и инертные газы. В современных ионно-геттерных насосах обычно совмещены геттерные и ионные методы откачки. Принцип действия ионно-геттерных насосов основан на поглощении газов периодически или непрерывно наносимой пленкой титана и улучшении откачки инертных газов и углеводородов путем ионизации и улавливания положительных ионов. Испарение титана в ионно-геттерных насосах происходит, как правило, из твердой фазы.

Конструкции и характеристики.Принципиальная схема ионно-геттерного насоса выглядит следующим образом: испарение титана на стенки водоохлаждаемого корпуса насоса производится из твердой фазы с прямонакальных испарителей, представляющих собой молибденовый U-образный стержень (керн), на который нанесен слой титана. Ионизация, необходимая для откачки инертных газов и углеводородов, осуществляется электронами, эмиттируемыми термокатодом. Эффективность ионизации повышена за счет увеличения длины пробега электронов. Это достигается применением «прозрачного» для электронов анода, на который подается положительное относительно катода напряжение 1000—1200 В. Анод, выполненный из молибденовой проволоки, используется также и в качестве внутреннего нагревателя для обезгазивания насоса при подготовке его к работе. Коллектором ионов является корпус насоса с напыленной титановой пленкой, в которую и внедряются образовавшиеся ионы. Таким образом, так же как и в геттерных насосах, химически активные газы поглощаются пленкой титана, непрерывно наносимой на внутреннюю поверхность корпуса насоса, а откачка инертных газов осуществляется путем ионизации и последующего внедрения ионов в пленку геттера.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Коллектив авторов читать все книги автора по порядку

Коллектив авторов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Большая энциклопедия техники отзывы


Отзывы читателей о книге Большая энциклопедия техники, автор: Коллектив авторов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x