Коллектив авторов - Большая энциклопедия техники
- Название:Большая энциклопедия техники
- Автор:
- Жанр:
- Издательство:Array Литагент «Научная книга»
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - Большая энциклопедия техники краткое содержание
Большая энциклопедия техники - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
С помощью натекателя, установленного в измерительной камере, увеличивают давление до значения, соответствующего максимальной производительности насоса. Затем натекателем, установленным на магистрали (соединяющей выпускной патрубок насоса с насосом предварительного разрежения), напускают газ до тех пор, пока давление в измерительной камере не возрастет на 50% больше ранее достигнутого давления. Давление, измеренное в этот момент на выпускном патрубке насоса, принимают за наибольшее выпускное давление.
Магнитные электроразрядные насосы
Магнитные электроразрядные насосы – принцип действия: в отличие от ионно-геттерных насосов с термическим испарением титана в магнитных электроразрядных насосах для получения активных пленок и для ионизации газов используются разряд в магнитном поле и вызванное им катодное распыление титана. Вследствие этого в магнитных электроразрядных насосах устранен такой существенный недостаток, присущий ионно-геттерным насосам, как наличие накаленных элементов электродной системы.
Схема простейшего диодного магнитного электроразрядного насоса выглядит следующим образом: анод насоса образован из отдельных разрядных ячеек, с открытых концов которых расположены общие катоды из титана.
Эта электродная система помещается в магнитное поле, перпендикулярное плоскости катодов. При подаче на электроды разности потенциалов в несколько киловольт в ячейках возникает газовый разряд, который благодаря магнитному полю поддерживается в широком диапазоне давлений. Положительные ионы газов, образующиеся в разряде при соударении электронов с молекулами, ускоряются электрическим полем в направлении катодов и внедряются в них, вызывая распыление материала катодов. Распыленный с катодов титан оседает главным образом на аноде. Активные газы (азот, кислород), присутствующие в вакуумной системе, попадая на свеженанесенную на аноды пленку, связываются на ней, образуя устойчивые химические соединения с титаном. Образующиеся при реакциях устойчивые соединения – нитриды или окислы титана – могут возникать и на катоде в момент попадания туда ионов или молекул азота и кислорода. Однако из-за сильного распыления материала катода активные газы, в конце концов, оказываются в основном на аноде, оставаясь лишь на их участках катода, которые почти не подвергаются «минной» бомбардировке. Многоатомные газы, пары воды, углекислый газ, аммиак, углеводороды, по-видимому, диссоциируют в разряде. Ионы осколков молекул также вызывают распыление материала катода. Ионы легких газов (водород, дейтерий, гелий) не вызывают заметного распыления материала катода. Для них более существенным является второй механизм откачки: ионы легких газов, имеющие малые размеры, могут внедряться в материал катода и диффундировать и его. Таким образом, быстрота действия магнитного электроразрядного насоса зависит от рода газа или пара.
Первоначально относительно высокая быстрота действия насоса по этим газам постепенно уменьшается, особенно для гелия, не образующего с титаном твердых растворов. При бомбардировке материала катода ионами тяжелых газов или при нагреве его разрядом до температуры свыше 470 К наблюдается обратное выделение легких газов. Тяжелые инертные газы – аргон, криптон и ксенон – откачиваются благодаря адсорбции ионов катодом. Вследствие больших молекулярных размеров диффузия этих газов в катод затруднена, и первоначально высокая быстрота действия насоса по газам резко уменьшается. Поглощение этих газов происходит в основном на периферийных участках ячеек катодов, куда наносится титан, интенсивно распыляемый тяжелыми ионами из центральных частей ячеек катодов. При откачке аргона с давлением около 10 -3Па и при длительной откачке воздуха с давлением больше 10 -3Па, содержащего 1% аргона, наблюдается резкое периодическое повышение давления, называемое аргонной нестабильностью. Тем не менее присутствие аргона с парциальным давлением меньше 10 -3Па при периодическом обезгазивании насоса оказывается полезным, так как при этом интенсифицируется распыление материала катода и увеличивается скорость откачки активных газов.
Таким образом, важной особенностью магниторазрядных насосов является своеобразная авторегулировка скорости испарения материала катодов, обеспечивающая экономное расходование материала и большой срок службы насоса. Поскольку ионный ток приблизительно пропорционален давлению, он часто используется для оценки давления в насосе и откачиваемом сосуде. Простота устройства и возможность работы в любом положении также выгодно отличают магнитные электроразрядные насосы от других.
Для понимания работы магниторазрядных насосов, помимо различий в механизме поглощения различных газов, необходимо иметь в виду изменение характера газового разряда с изменением давления. При давлении больше 10 -1Па ток разряда велик вследствие большой электропроводности разрядного промежутка; чтобы разряд при этом не перешел в дуговой, ток разряда специально ограничивается (в малых насосах используется балластное сопротивление, в крупных насосах используют более сложные электрические цепи), что приводит к уменьшению падения напряжения на разрядном промежутке. При этом уменьшается энергия ионов и, следовательно, резко снижается скорость распыления материала катодов. Поэтому быстрота действия насоса при высоких давлениях невелика, а относительно большой ток вызывает разогрев электродов и сильное газовыделение, вследствие чего давление в системе повышается. В этих условиях целесообразно продолжать откачку насосом предварительного разрежения до начала периода пуска, когда эффект откачки магнитным электроразрядным насосом становится заметным.
В период пуска, который может продолжаться от нескольких минут до нескольких часов в зависимости от состояния насоса, давление понижается от 10 -2до 1 Па и разряд принимает форму, характерную для высокого вакуума. Сопротивление разрядного промежутка увеличивается, ток уменьшается, и происходит рост анодного напряжения, что ведет к увеличению быстроты действия насоса. Период пуска завершается относительно быстрым переходом в область высокого вакуума; ток продолжает уменьшаться пропорционально давлению, анодное напряжение и быстрота действия насоса достигают номинальных значений.
Конструкции и характеристики.Конструкции магниторазрядных насосов довольно разнообразны, что объясняется различиями в условиях их применения. В одних случаях от насоса требуется длительная работа в области предельно низких давлений, в других – насос должен использоваться в циклических производственных процессах с частыми пусками, в ряде случаев от магнитного электроразрядного насоса требуется повышенная эффективность откачки инертного газа и т. п.
Читать дальшеИнтервал:
Закладка: